sequence_pool_op.h 2.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <string>
Y
Yi Wang 已提交
17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

Q
QI JUN 已提交
28
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
29
class SequencePoolKernel : public framework::OpKernel<T> {
30 31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
33
    auto* out = context.Output<Tensor>("Out");
D
dzhwinter 已提交
34
    std::string pooltype = context.Attr<std::string>("pooltype");
D
dzhwinter 已提交
35 36 37 38
    Tensor* index = nullptr;
    if (pooltype == "MAX") {
      index = context.Output<Tensor>("MaxIndex");
    }
39 40

    auto dims = in->dims();
Q
Qiao Longfei 已提交
41 42 43 44 45 46 47 48 49
    auto lod = in->lod();
    // InferShape by lod
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
    PADDLE_ENFORCE_GE(
        dims[0],
        /*batch size = */ static_cast<int64_t>(lod[0].size() - 1),
        "The first dimension of Input(X) must be large than batch size.");
    dims[0] = lod[0].size() - 1;
    out->Resize({dims});
50
    out->mutable_data<T>(context.GetPlace());
51 52 53
    if (pooltype == "MAX") {
      index->Resize({dims});
      index->mutable_data<int>(context.GetPlace());
54
    }
D
dzhwinter 已提交
55 56 57
    math::SequencePoolFunctor<DeviceContext, T> pool;
    pool(context.template device_context<DeviceContext>(), pooltype, *in, out,
         index);
58 59 60
  }
};

Q
QI JUN 已提交
61
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
62
class SequencePoolGradKernel : public framework::OpKernel<T> {
63 64
 public:
  void Compute(const framework::ExecutionContext& context) const override {
65
    auto* out_g = context.Input<Tensor>(framework::GradVarName("Out"));
66
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
67
    std::string pooltype = context.Attr<std::string>("pooltype");
D
dzhwinter 已提交
68
    const Tensor* index = nullptr;
69
    if (pooltype == "MAX") {
D
dzhwinter 已提交
70
      index = context.Input<Tensor>("MaxIndex");
71
    }
D
dzhwinter 已提交
72 73 74 75
    in_g->mutable_data<T>(context.GetPlace());
    math::SequencePoolGradFunctor<DeviceContext, T> pool;
    pool(context.template device_context<DeviceContext>(), pooltype, *out_g,
         in_g, index);
76 77 78 79 80
  }
};

}  // namespace operators
}  // namespace paddle