einsum.py 35.3 KB
Newer Older
T
Tongxin Bai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
16
import numpy as np
T
Tongxin Bai 已提交
17 18
import re

19
from .linalg import dot, matmul, transpose
Z
zhiboniu 已提交
20
from .manipulation import squeeze, unsqueeze, reshape
T
Tongxin Bai 已提交
21 22
from .math import multiply
from .math import sum as paddle_sum
23
from ..fluid.framework import _in_legacy_dygraph
24
from paddle import _C_ops, _legacy_C_ops
25 26
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
from ..fluid.layer_helper import LayerHelper
27 28 29 30
from ..fluid.framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
import collections
import string
import opt_einsum
T
Tongxin Bai 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

from paddle.common_ops_import import dygraph_only

__all__ = []


def parse_op_labels(labelstr, operand):
    '''
    Parse labels for an input operand.

    Parameters
    ----------
    labelstr:
        the input label string
    operand:
        the input operand

    Returns
    -------
50 51
    the input operand's full label string in which all anonymous dimensions are
    labeled in dots.
T
Tongxin Bai 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    '''
    # Sanity checks
    for c in labelstr.replace('.', ''):
        assert c.isalpha(), (
            f"Invalid equation: {c} is not a valid label, which should be letters."
        )

    assert labelstr.replace('...', '', 1).find('.') == -1, (
        f"Invalid equation: `.` is found outside of an ellipsis.")

    # Check shape. Note, in Paddle a tensor rank is always nonzero
    ndims = len(operand.shape)
    assert ndims > 0

    full_labelstr = labelstr.replace('...', '.' * (ndims - len(labelstr) + 3))

    assert len(full_labelstr) == ndims, (
        f"Invalid equation: the label string '{labelstr}' misses dimensions.")

    return full_labelstr


def parse_labels(labelstr, operands):
    '''
    Parse label strings for all input operands.
77

T
Tongxin Bai 已提交
78 79 80 81 82 83
    Parameters
    ----------
    labelstr:
        The equation's label string
    operands:
        The input operands
84

T
Tongxin Bai 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    Returns
    -------
    list of full label strings for all input operands
    '''

    nop_labels = labelstr.split(',')
    assert len(nop_labels) == len(operands), (
        f"Invalid equation: the number of operands is {len(operands)}, "
        f"but found {len(nop_labels)} segments in the label equation.")

    return list(map(parse_op_labels, nop_labels, operands))


def validate_rhs(rhs, input_labels, n_bcast_dims):
    '''
100
    Check whether the equation's right hand side is valid
T
Tongxin Bai 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    '''
    # Sanity check.
    if n_bcast_dims > 0:
        assert '...' in rhs, (
            f"Invalid equation: missing ellipsis in output labels.")

    rhs = rhs.replace('...', '')
    rhs_set = set(rhs)

    # Hidden assumption: availble labels don't include '.'
    assert '.' not in input_labels

    # Verify that output labels all come from the set of input labels
    non_input_labels = rhs_set.difference(input_labels)
    assert not non_input_labels, (
        f"Invalid equation: "
        f"output label {sorted(non_input_labels)} not used by any input.")
    # Verify that output labels are not duplicate
    assert len(rhs) == len(rhs_set), (
        f"Invalid equation: duplicate output labels are found.")


def build_view(in_labels, out_labels):
    '''
125 126
    Build an inverse map of dimension indices. Three conditions must hold for
    the result to be meaningful.
T
Tongxin Bai 已提交
127 128 129 130 131 132 133 134 135 136
    First, no duplicate letter labels in each label string.
    Second, the number of dots in dimout_labels >= that in in_labels.
    Third, dots are contiguous in each label string.

    Parameters
    ----------
    in_labels:
        The dimension labels to map to
    out_labels:
        The dimension labels to map from
137

T
Tongxin Bai 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    Returns
    -------
    The inverse map from out_labels to in_labels. The length of the inverse map equals that of
    out_labels. -1 is filled if there's no matching intput dimension for a specific label.

    Examples
    --------
    in_labels = 'ij..', out_labels = '..ji'
    inv_map = [2, 3, 1, 0]
    in_labels = 'ij..', out_labels = '..kji'
    inv_map = [2, 3, -1, 1, 0]
    '''

    inv_map = [-1] * len(out_labels)

    # First build the broadcast dimension mapping
    # Find the broadcast index range in out_labels
    r = re.search(r'\.+', out_labels)
    if r:
        start, end = r.start(), r.end()
        s = re.search(r'\.+', in_labels)
        # fill the broadcast dimension indices from right to left.
        if s:
            for ax, dim in zip(
162 163
                    range(start, end)[::-1],
                    range(s.start(), s.end())[::-1]):
T
Tongxin Bai 已提交
164 165
                inv_map[ax] = dim

166
    # Now work on non-broadcast dimensions
T
Tongxin Bai 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    if r:
        it = itertools.chain(range(start), range(end, len(out_labels)))
    else:
        it = iter(range(len(out_labels)))

    for i in it:
        inv_map[i] = in_labels.find(out_labels[i])

    return inv_map


def build_global_view(nop_labels, rhs, n_bcast_dims):
    '''
    Build the global view, which is a layout of all dimension labels
    plus an index table that maps from the layout to the dimensions
    in each operand. In the global view, the dimensions are arranged
    such that output ones are put on the left and contraction ones
184
    are put on the right.
T
Tongxin Bai 已提交
185 186 187 188 189 190 191 192 193

    Parameters
    ----------
    nop_labels:
        The input full label strings of all input operands
    rhs:
        The equation right hand side
    n_bcast_dims:
        The maxium number of broadcast dimensions
194

T
Tongxin Bai 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    Returns
    -------
    A tuple of g_labels, g_view, g_nout, g_count
    g_labels:
        the layout of all labels in a string
    g_view:
        the index table
    g_nout:
        the number of output dimensions
    g_count:
        the counter array for dimension contractions
    '''
    # Put all labels in alphabetical order
    concat = sorted(''.join(nop_labels).replace('.', ''))
    labels, count = [], []
    for a, b in zip(['.'] + concat, concat):
        if a != b:
            labels.append(b)
            count.append(1)
        else:
            count[-1] += 1

    if rhs != None:
        validate_rhs(rhs, labels, n_bcast_dims)
        g_labels_out = rhs.replace('...', '.' * n_bcast_dims)
    else:
        g_labels_out = '.' * n_bcast_dims + ''.join(
            l for l, c in zip(labels, count) if c == 1)

    for i in range(len(count))[::-1]:
        if labels[i] in g_labels_out:
            labels.pop(i)
            count.pop(i)

    g_labels_sum = ''.join(labels)
    g_labels = g_labels_out + g_labels_sum
    g_view = list(map(lambda i: build_view(i, g_labels), nop_labels))
    g_nout = len(g_labels_out)
    g_count = count

    return g_labels, g_view, g_nout, g_count


def build_global_shape(g_view, g_labels, op_shapes):
    '''
240
    The global shape is the shape of all dimensions rearranged and broadcasting
T
Tongxin Bai 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    to the global view. It's a reference data structure for einsum planning.

    Parameters
    ----------
    g_view:
        the global view
    op_shapes:
        the shapes of the all operands

    Returns
    -------
    g_shape:
        the global shape vector
    g_masks:
        list of shape masks for each operand. A dimension's shape mask is a boolean
        indicating whether its size > 1, in other words, it's not squeezable
    '''
    view_shapes = []
    g_masks = []

    for view, op_shape in zip(g_view, op_shapes):
        view_shapes.append([op_shape[dim] if dim > -1 else 1 for dim in view])

    g_shape = [set(sizes_per_ax) - {1} for sizes_per_ax in zip(*view_shapes)]

    non_bcastable = [ax for ax, sizes in enumerate(g_shape) if len(sizes) > 1]

    assert not non_bcastable, (
        f"Invalid operands: label {g_labels[non_bcastable[0]]} "
        f"corresponds to non-broadcastable dimensions.")

    g_shape = [sizes.pop() if len(sizes) > 0 else 1 for sizes in g_shape]

274 275
    g_masks = [[s > 1 or s == -1 for s in view_shape]
               for view_shape in view_shapes]
T
Tongxin Bai 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289

    return g_shape, g_masks


def has_duplicated_labels(labels):
    '''
    Returns True if there is any duplicate label.
    '''
    labels = labels.replace('.', '')
    return len(labels) > len(set(labels))


def diagonalize(labels, operand):
    '''
290 291
    Merges dimensions with duplicate labels.

T
Tongxin Bai 已提交
292
    For those dimensions with duplicate labels, merge them into one dimension
293 294
    which represents the diagonal elements. This requires the dimensions with
    duplicate labels are equal sized.
295

T
Tongxin Bai 已提交
296
    Examples
297
    --------
T
Tongxin Bai 已提交
298 299
    'ijj...i' would be merged into 'ij...'
    '''
300 301
    assert not has_duplicated_labels(labels), (
        f'Duplicate labels are not supported.')
T
Tongxin Bai 已提交
302

303
    return labels, operand
T
Tongxin Bai 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319


def plan_reduce(plan, op, reduce_dims, keepdim):
    '''
    Add reduce to the plan
    '''
    varname = f'op{op}'

    f = lambda var, dims: paddle_sum(var, dims, keepdim=keepdim)
    step = f, [varname], varname, reduce_dims
    plan.add_step(step)


def plan_scalar_prod(plan, op1, op2):
    varnames = [f'op{op1}', f'op{op2}']
    f = lambda var1, var2: paddle_sum(var1) * var2
320
    # f = lambda var1, var2: var1 * var2
T
Tongxin Bai 已提交
321 322 323 324
    step = f, varnames, varnames[1]
    plan.add_step(step)


325
def plan_matmul(plan, g_view, op1, op2, g_supports, g_shape, I, J1, J2, K):
T
Tongxin Bai 已提交
326 327 328 329 330 331 332 333 334
    '''
    plan matmul
    '''
    # Transpose and re-shape op1 and op2 in I, J1, K and I, J2, K
    # Then apply matmul(x, y, transpose_x=False, tranpose_y=True)
    var1, var2 = f'op{op1}', f'op{op2}'

    op1_view, op2_view = [g_view[op] for op in (op1, op2)]

335 336 337 338
    I1 = [idx for idx in I if op1_view[idx] >= 0]
    I2 = [idx for idx in I if op2_view[idx] >= 0]
    op1_view = np.array(op1_view)
    op1_dims = op1_view[I1 + J1 + K]
T
Tongxin Bai 已提交
339

340 341
    op2_view = np.array(op2_view)
    op2_dims = op2_view[I2 + J2 + K]
T
Tongxin Bai 已提交
342

343 344 345 346
    op1_mask, op2_mask = [g_supports[op] for op in (op1, op2)]
    op1_vshape = np.array([s if m else 1 for s, m in zip(g_shape, op1_mask)])
    op2_vshape = np.array([s if m else 1 for s, m in zip(g_shape, op2_mask)])
    vshape = np.maximum(op1_vshape, op2_vshape)
T
Tongxin Bai 已提交
347

348
    i1, i2, j1, j2, k = map(len, (I1, I2, J1, J2, K))
T
Tongxin Bai 已提交
349

350
    if any(op1_dims != np.arange(len(op1_dims))):
T
Tongxin Bai 已提交
351
        # print(f'perm1: {perm1}')
352
        step = transpose, [var1], var1, list(op1_dims)
T
Tongxin Bai 已提交
353 354
        plan.add_step(step)

355
    if any(op2_dims != np.arange(len(op2_dims))):
T
Tongxin Bai 已提交
356
        # print(f'perm2: {perm2}')
357
        step = transpose, [var2], var2, list(op2_dims)
T
Tongxin Bai 已提交
358 359
        plan.add_step(step)

360 361 362 363 364 365 366
    # Check if conditions hold for turnning the operation into a matmul
    if j1 + j2 > 0 and k > 0 and -1 not in np.concatenate(
        (op1_vshape, op2_vshape)):
        op1_shape = list(op1_vshape[I]) + [np.prod(op1_vshape[J1])
                                           ] + [np.prod(op1_vshape[K])]
        op2_shape = list(op2_vshape[I]) + [np.prod(op2_vshape[J2])
                                           ] + [np.prod(op2_vshape[K])]
T
Tongxin Bai 已提交
367

368 369
        # Merge J dims and K dims by reshaping
        step = reshape, [var1], var1, op1_shape
T
Tongxin Bai 已提交
370
        plan.add_step(step)
371
        step = reshape, [var2], var2, op2_shape
T
Tongxin Bai 已提交
372 373 374 375 376 377
        plan.add_step(step)

        # Matmul
        step = matmul, [var1, var2], var2, False, True
        plan.add_step(step)

378 379 380
        # Reshape back
        shape = list(vshape[I + J1 + J2])
        step = reshape, [var2], var2, shape
T
Tongxin Bai 已提交
381 382
        plan.add_step(step)

383 384 385 386 387
    elif j1 == j2 == k == 1:
        # Can still do matmul even unknown shapes are present
        step = matmul, [var1, var2], var2, False, True
        plan.add_step(step)

388
    # In the rest cases we opt for ops other than matmul
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    else:
        # unsqueeze operands include J1...J2... dimensions
        if j2:
            fill = list(range(i1 + j1, i1 + j1 + j2))
            step = unsqueeze, [var1], var1, fill
            plan.add_step(step)
        if j1:
            fill = list(range(i2, i2 + j1))
            step = unsqueeze, [var2], var2, fill
            plan.add_step(step)
        # In case of no dimensions to contract, do an elementwise multiply
        if k == 0:
            # make broadcast
            step = multiply, [var1, var2], var2
            plan.add_step(step)
        # Contract and no join, turn into a dot
        elif j1 + j2 == 0 and k == 1:
            step = unsqueeze, [var1], var1, [-2]
            plan.add_step(step)
            step = unsqueeze, [var2], var2, [-1]
            plan.add_step(step)
            step = matmul, [var1, var2], var2
            plan.add_step(step)
            step = squeeze, [var2], var2, [-1, -2]
            plan.add_step(step)
414
        elif j1 + j2 == 0 and not -1 in np.concatenate(
415 416
            (op1_vshape[K], op2_vshape[K])):
            assert all(op1_vshape[K] == op2_vshape[K])
417 418 419
            step = reshape, [
                var1
            ], var1, list(op1_vshape[I]) + [1] + [np.prod(op1_vshape[K])]
420
            plan.add_step(step)
421 422 423
            step = reshape, [
                var2
            ], var2, list(op2_vshape[I]) + [1] + [np.prod(op2_vshape[K])]
424 425 426 427 428 429 430 431 432 433 434
            plan.add_step(step)
            step = matmul, [var1, var2], var2, False, True
            plan.add_step(step)
            step = squeeze, [var2], var2, [-1, -2]
            plan.add_step(step)
        else:
            step = multiply, [var1, var2], var2
            plan.add_step(step)
            reduce_dims = list(range(-k, 0))
            plan_reduce(plan, op2, reduce_dims, keepdim=False)

T
Tongxin Bai 已提交
435 436
    # Wrap up, updating auxiliary data
    # Updating g_mask for I and J axes
437 438
    for ax in I + J1 + J2:
        op2_mask[ax] = vshape[ax] > 1 or vshape[ax] == -1
T
Tongxin Bai 已提交
439 440 441 442 443 444 445 446 447 448

    for ax in K:
        op2_mask[ax] = False

    for ax in range(len(op2_view)):
        op2_view[ax] = -1
    dim = 0
    for ax in I + J1 + J2:
        op2_view[ax], dim = dim, dim + 1

449 450
    g_view[op2] = list(op2_view)

T
Tongxin Bai 已提交
451

452
def plan_summation(plan, g_view, op1, op2, g_supports, g_shape, g_count,
T
Tongxin Bai 已提交
453 454 455 456 457
                   n_bcast):
    '''
    Plan various kinds of summation
    '''
    op1_view, op2_view = g_view[op1], g_view[op2]
458
    op1_mask, op2_mask = g_supports[op1], g_supports[op2]
T
Tongxin Bai 已提交
459 460 461 462 463 464 465 466

    ndim = len(op1_view)
    nout = ndim - len(g_count)

    count = [0] * nout + g_count

    I, K, J1, J2 = list(range(n_bcast)), [], [], []

467 468
    for ax, dim1, dim2 in zip(range(n_bcast, ndim), op1_view[n_bcast:],
                              op2_view[n_bcast:]):
T
Tongxin Bai 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

        if (dim1 != -1) != (dim2 != -1):
            if dim1 != -1:
                J1.append(ax)
            else:
                J2.append(ax)
        elif dim1 != -1:
            fold = int(op1_mask[ax]) + int(op2_mask[ax])
            if ax >= nout and fold == count[ax]:
                # Ready to fold the dimensions
                K.append(ax)
                count[ax] -= fold
            else:
                I.append(ax)
                count[ax] -= max(fold - 1, 0)

    # Update g_count
    g_count[:] = count[nout:]

    # Now it's OK to merge the K dims as the same shape holds
    # print(f'I: {I}   J1: {J1}    J2: {J2}   K: {K}')
490
    plan_matmul(plan, g_view, op1, op2, g_supports, g_shape, I, J1, J2, K)
T
Tongxin Bai 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533


def rearrange(axes):
    perm, fill = [], []
    for ax, dim in enumerate(axes):
        if dim < 0:
            fill.append(ax)
        else:
            perm.append(dim)
    # Trivial permutation returns []
    if all(i == dim for i, dim in enumerate(perm)):
        perm = []

    return perm, fill


def plan_broadcast(plan, operands, nop_axes):
    '''
    Plan broadcast across
    '''
    nop = len(operands)
    varnames = [f'op{i}' for i in range(nop)]

    for i, op_axes in zip(range(nop), nop_axes):
        # Re-arrange the dimesions according to the global layout
        perm, fill = rearrange(op_axes)
        var = varnames[i]
        if perm:
            step = transpose, [var], var, perm
            plan.add_step(step)
        if fill:
            step = unsqueeze, [var], var, fill
            plan.add_step(step)

    def f(*args):
        expr = ' * '.join(varnames)
        return eval(expr, dict(zip(varnames, args)))

    step = f, varnames, None
    plan.add_step(step)


class Plan:
534

T
Tongxin Bai 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
    def __init__(self):
        self.env = {}
        self.steps = []

    def add_step(self, step):
        self.steps.append(step)

    def get_var(self, varname):
        return self.env[varname] if varname in self.env else None

    def set_var(self, varname, var):
        self.env[varname] = var

    def show(self):
        res = None
        for f, in_varnames, out_varname, *args in self.steps:
            print(repr((out_varname, f, *in_varnames, *args)))
        return res

    def execute(self):
        res = None
        for f, in_varnames, out_varname, *args in self.steps:
            res = f(*map(self.get_var, in_varnames), *args)
            if out_varname:
                self.set_var(out_varname, res)
        return res


563
def plan_einsum(operands, g_view, g_shape, g_supports, g_count, n_bcast):
T
Tongxin Bai 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    '''
    Plans the actual execution steps.
    Results
    -------
    the execution plan
    '''
    nop = len(operands)
    ndim = len(g_view[0])
    nout = ndim - len(g_count)

    # Initialize a plan with an environment
    plan = Plan()
    op_names = [f'op{i}' for i in range(nop)]
    list(map(plan.set_var, op_names, operands))

    # In case no dimensions to combine, do broadcast straight across
    if not g_count:
        plan_broadcast(plan, operands, g_view)
        return plan

584 585 586
    # Down count degenerate contraction dimensions.
    for view, support in zip(g_view, g_supports):
        # To collect the down count number, we use a type casting trick
T
Tongxin Bai 已提交
587
        down_count = [
588 589
            int((d + 1) and (not s))
            for d, s in zip(view[nout:], support[nout:])
T
Tongxin Bai 已提交
590
        ]
591 592
        for i, count in enumerate(down_count):
            g_count[i] -= count
T
Tongxin Bai 已提交
593

594 595
    # Reduce any dimension for which g_support is set and g_count == 1
    for i, view, mask in zip(range(nop), g_view, g_supports):
T
Tongxin Bai 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
        to_reduce = []
        for dim, masked, count in zip(view[nout:], mask[nout:], g_count):
            to_reduce.append(dim if (masked and count == 1) else -1)

        reduce_dims = list(filter(lambda x: x > -1, to_reduce))
        if reduce_dims:
            plan_reduce(plan, i, reduce_dims, keepdim=True)

        # Unset mask and decrease g_count for the reduced dimensions
        for i, d in enumerate(to_reduce):
            ax = i + nout
            mask[ax] = mask[ax] and (d == -1)
            g_count[i] -= 0 if d == -1 else 1

    # Plan the summations over the operand sequence
    for i in range(nop):
        # plan a single step

        if i == 0:
            continue

        # We'd like to arrange the dimensions in the following way:
        # [I...  J... K...]
        # [I...  J... K...]
620 621
        # where
        #       I... are aligned and not to be combined immediately
T
Tongxin Bai 已提交
622 623 624 625 626 627 628 629 630 631 632 633
        #       J... are not aligned and not to be combined immediately
        #       K... are aligned and should be immediately combined
        # At this point the non-trivial broadcast dimensinos in K are already reduced
        # and removed. That means all K dimensions are aligned and their sizes are not 1.
        # We then inspect the layout of I,J,K plus the above observation to make
        # specializatoin decisions.  The current strategy is set as follows:
        #  (1) if I... J... K... are all empty, it's multiplying a scalar
        #  (2) if K... are empty, better use a broadcast
        #  (3) if I... J... empty and K... not empty, a vector-vector multiply (or a dot)
        #  (4) Elsewise, either I... or J... not empty, and K... not empty, use a general matmul

        # Resolve the summation kind: dot, matmul or *
634 635
        if not any(g_supports[i - 1]):
            # op1 is a one element tensor.
T
Tongxin Bai 已提交
636 637
            plan_scalar_prod(plan, i - 1, i)
        else:
638
            plan_summation(plan, g_view, i - 1, i, g_supports, g_shape, g_count,
T
Tongxin Bai 已提交
639 640 641 642
                           n_bcast)

    # for ax, dim in enumerate(g_view[nop-1][:nout]):
    #     assert dim == ax
643
    assert all(not masked for masked in g_supports[nop - 1][nout:])
T
Tongxin Bai 已提交
644 645 646 647

    view = g_view[-1]
    if any(ax != dim for ax, dim in enumerate(view[:nout])):
        perm = [dim for dim in view if dim >= 0]
648 649 650 651
        if sorted(perm) != perm:
            varname = f'op{nop-1}'
            step = transpose, [varname], varname, perm
            plan.add_step(step)
T
Tongxin Bai 已提交
652
        dim = 0
653
        unsqueeze_dims = []
T
Tongxin Bai 已提交
654 655 656
        for ax, d in enumerate(view):
            if d != -1:
                view[ax], dim = dim, dim + 1
657 658 659 660 661 662 663
        for ax, d in enumerate(view[:nout]):
            if d == -1:
                unsqueeze_dims.append(ax)
        if unsqueeze_dims:
            varname = f'op{nop-1}'
            step = unsqueeze, [varname], varname, unsqueeze_dims
            plan.add_step(step)
T
Tongxin Bai 已提交
664 665 666 667 668 669 670 671 672 673 674

    squeeze_dims = [dim for dim in view[nout:] if dim != -1]
    if squeeze_dims:
        # plan_reduce(plan, nop-1, reduce_dims, keepdim=False)
        varname = f'op{nop-1}'
        step = squeeze, [varname], varname, squeeze_dims
        plan.add_step(step)

    return plan


675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
def preprocess(equation, *operands):
    """
    check equation / raise error, default right labels generation
    """
    equation = equation.replace(" ", "")
    nop = len(operands)
    assert nop > 0, "Required at least one operand in Einsum API, but received %s " % nop

    # Part the equation to left hand side and right hand side
    lhs, *rhs = equation.lower().split('->')
    assert len(rhs) < 2, "Invalid equation: multiple `->` were found."

    labels = parse_labels(lhs, operands)
    # Note, we distinguish between 'ij->' and 'ij' by setting rhs to '' and None
    rhs = rhs[0] if rhs else None
    if rhs is None:
        rhs = rhs_inference(lhs)

    assert len(lhs.split(',')) == len(operands), (
        f"Invalid equation: the number of operands is {len(operands)}, "
        f"but found {len(lhs.split(','))} segments in the label equation.")

    assert not ('...' in lhs and '...' not in rhs
                ), f'Invalid equation: missing ellipsis in output labels.'

700 701
    assert not (len(list(filter(has_duplicated_labels, lhs.split(',')))) >
                0), f'Duplicate labels are not supported.'
702 703 704 705 706 707 708 709

    assert not has_duplicated_labels(
        rhs), f'Invalid equation: duplicate output labels are found.'

    return lhs, rhs, labels


def parse_fake_shape(equation, operands, labels):
710
    """
711
    this shape is just used for operands planning. may differ with the original shape.
712
    for example:
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
    ... is replaced by 1
    -1  is replaced by 1
    Results
    -------
    list of shape
    """
    shaped = collections.namedtuple('shaped', ['shape'])

    def fake_shape(label, op):
        assert len(op.shape) == len(
            label
        ), "length of shape and length of label must be the same, but received %d != %d" % (
            len(op.shape), len(label))
        fakes = [s for i, (l, s) in enumerate(zip(label, op.shape)) if l != '.']
        fakes = list(map(abs, fakes))  # make -1 -> 1
        if '.' in label:
            fakes.insert(label.index('.'), 1)
        return shaped(fakes)

    out = list(map(fake_shape, labels, operands))
    return out


def rhs_inference(lhs):
737

738 739 740 741 742 743 744 745 746 747
    def is_free(key):
        return cnt.get(key) == 1 and key not in ['.', ',']

    cnt = collections.Counter(lhs)
    rhs = "..." if '...' in lhs else ""
    rhs = rhs + "".join(filter(is_free, sorted(cnt.elements())))
    return rhs


def gen_equation_for_opteinsum(lhs, rhs):
748
    """
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
    1. gen rhs if rhs is None
    2. '...' -> 'A'
    """

    def get_used_label(counter):
        used = set(counter.elements())
        for c in string.ascii_lowercase:
            if c not in used: return c
        raise ValueError(
            "You have used all `a` - `z`, there can't find a unused for einsum optimization"
        )

    cnt = collections.Counter(lhs)
    broadcast_label = get_used_label(cnt)
    if rhs is None:
        rhs = rhs_inference(lhs)
    lhs = lhs.replace("...", broadcast_label)
    rhs = rhs.replace("...", broadcast_label)
    return lhs + "->" + rhs, broadcast_label


770
def einsum_v2(equation, *operands):
771
    """
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
    einsum v2 implementation.
    1. Implement C++ EinsumOp.
    2. V2 create the EinsumOp to calculate, so just a little verifty work in python.
    3. V2 use opt_einsum.contract_path to optimize the multivariable einsum.
    """
    n_op = len(operands)
    lhs, rhs, labels = preprocess(equation, *operands)

    if n_op <= 2:
        return gen_einsum_op(lhs + '->' + rhs, *operands)

    shapes = parse_fake_shape(lhs, operands, labels)
    opt_equation, broadcast_label = gen_equation_for_opteinsum(lhs, rhs)
    _, cons = opt_einsum.contract_path(opt_equation, *shapes, einsum_call=True)
    var_list = list(operands)
    for path in cons:
        (a, b), _, eq, *__ = path
        assert a > b, "Assume the first var_idx is smaller than the second_idx. opt_einsum can guarantee it."
        var_s = [var_list.pop(a), var_list.pop(b)]
        eq = eq.replace(broadcast_label, "...")
        var_list.append(gen_einsum_op(eq, *var_s))
    assert len(
        var_list
    ) == 1, "There must be one elements in list, but received %d." % len(
        var_list)
    return var_list[0]


def gen_einsum_op(equation, *operands):
801 802
    """
    EinsumOp Python Interface:
803 804 805
    """
    assert len(operands) <= 2, "Only support two operands in EinsumOp."
    if in_dygraph_mode():
806
        return _C_ops.einsum(operands, equation)[0]
807

808 809
    if _in_legacy_dygraph():
        # dygraph
810 811
        return _legacy_C_ops.einsum(operands, len(operands), len(operands),
                                    'equation', equation)[0]
812

813 814 815 816 817 818 819
    for inp in operands:
        check_variable_and_dtype(inp, 'dtype', ['float32', 'float64'], 'einsum')
    check_type(equation, 'equation', str, 'einsum')
    helper = LayerHelper('einsum', **locals())
    out = helper.create_variable_for_type_inference(dtype=operands[0].dtype)
    attrs = dict()
    attrs['equation'] = equation
820 821 822 823
    caches = [
        helper.create_variable_for_type_inference(dtype=operands[0].dtype)
        for i in range(len(operands))
    ]
824 825 826 827
    xshape = [
        helper.create_variable_for_type_inference(dtype=operands[0].dtype)
        for i in range(len(operands))
    ]
828 829 830 831
    helper.append_op(type='einsum',
                     inputs={'Operands': operands},
                     outputs={
                         'Out': out,
832 833
                         "InnerCache": caches,
                         "XShape": xshape
834 835
                     },
                     attrs=attrs)
836 837 838
    return out


T
Tongxin Bai 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
def einsum(equation, *operands):
    r"""
    einsum(equation, *operands)

    The current version of this API should be used in dygraph only mode.

    Einsum offers a tensor operation API which allows using the Einstein summation
    convention or Einstain notation. It takes as input one or multiple tensors and
    produces as output one tensor.

    Einsum is able to perform a variety of tensor operations. Following lists a few:

        - for single operand
            - trace
            - diagonal
            - transpose
            - sum
        - for double operands
            - dot
            - outer
            - broadcasting and elementwise multiply
            - matrix multiply
            - batched matrix multiply
        - for many operads
            - broadcasting multiply
            - chained matrix multiply
865

T
Tongxin Bai 已提交
866 867 868 869 870 871 872
    **The summation notation**

        - The tensor dimensions are labeled using uncased English letters. E.g., `ijk`
        relates to a three dimensional tensor whose dimensions are labeled i, j, and k.
        - The equation is `,` separated into terms, each being a distinct input's
        dimension label string.
        - Ellipsis `...` enables broadcasting by automatically converting the unlabeled
873
        dimensions into broadcasting dimensions.
T
Tongxin Bai 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
        - Singular labels are called free labels, duplicate are dummy labels. Dummy labeled
        dimensions will be reduced and removed in the output.
        - Output labels can be explicitly specified on the right hand side of `->` or omitted.
        In the latter case, the output labels will be inferred from the input labels.
            - Inference of output labels
                - Broadcasting label `...`, if present, is put on the leftmost position.
                - Free labels are reordered alphabetically and put after `...`.
            - On explicit output labels
                - If broadcasting is enabled, then `...` must be present.
                - The output labels can be an empty, an indication to output as a scalar
                the sum over the original output.
                - Non-input labels are invalid.
                - Duplicate labels are invalid.
                - For any dummmy label which is present for the output, it's promoted to
                a free label.
                - For any free label which is not present for the output, it's lowered to
                a dummy label.
        - Examples
Z
zhiboniu 已提交
892
            - '...ij, ...jk', where i and k are free labels, j is dummy. The output label
T
Tongxin Bai 已提交
893
            string is '...ik'
894
            - 'ij -> i', where i is a free label and j is a dummy label.
Z
zhiboniu 已提交
895
            - '...ij, ...jk -> ...ijk', where i, j and k are all free labels.
T
Tongxin Bai 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
            - '...ij, ...jk -> ij', an invalid equation since `...` is not present for
            the output.

    **The summation rule**

    The summation procedure can be outlined as follows, although the actual steps taken
    may vary significantly due to implementation specific optimization.

        - Step 1: preparation for broadcasting, that is, transposing and unsqueezing
        the input operands to have each resulting dimension identically labeled across
        all the input operands.
        - Step 2: broadcasting multiply all the resulting operands from step 1.
        - Step 3: reducing dummy labeled dimensions.
        - Step 4: transposing the result tensor to match the output labels.

    **On trace and diagonal**

913
    The trace and diagonal are planned yet unimplemented features.
T
Tongxin Bai 已提交
914 915 916 917 918 919 920

    Args:
        equation (`str`):
            The summation terms using the Einstein summation notation.
        operands (`list|Tensor`):
            The input tensors over which to compute the Einstein summation. The number of
            operands should equal the number of input terms in the equation.
921

T
Tongxin Bai 已提交
922 923
    Returns:
        result (`Tensor`): the result tensor.
924

T
Tongxin Bai 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
    Examples:
        .. code-block:: python

        import paddle
        paddle.seed(102)
        x = paddle.rand([4])
        y = paddle.rand([5])

        # sum
        print(paddle.einsum('i->', x))
        # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   1.95791852)

        # dot
        print(paddle.einsum('i,i->', x, x))
        # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [1.45936954])
942

T
Tongxin Bai 已提交
943 944 945 946 947 948 949
        # outer
        print(paddle.einsum("i,j->ij", x, y))
        # Tensor(shape=[4, 5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[0.00079869, 0.00120950, 0.00136844, 0.00187187, 0.00192194],
        #    [0.23455200, 0.35519385, 0.40186870, 0.54970956, 0.56441545],
        #    [0.11773264, 0.17828843, 0.20171674, 0.27592498, 0.28330654],
        #    [0.32897076, 0.49817693, 0.56364071, 0.77099484, 0.79162055]])
950

T
Tongxin Bai 已提交
951 952
        A = paddle.rand([2, 3, 2])
        B = paddle.rand([2, 2, 3])
953

T
Tongxin Bai 已提交
954 955 956 957 958 959 960 961 962 963
        # transpose
        print(paddle.einsum('ijk->kji', A))
        #  Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.95649719, 0.49684682],
        #     [0.80071914, 0.46258664],
        #     [0.49814570, 0.33383518]],
        #
        #    [[0.07637714, 0.29374704],
        #     [0.51470858, 0.51907635],
        #     [0.99066722, 0.55802226]]])
964

T
Tongxin Bai 已提交
965 966 967 968 969 970 971 972 973 974
        # batch matrix multiplication
        print(paddle.einsum('ijk, ikl->ijl', A,B))
        # Tensor(shape=[2, 3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.32172769, 0.50617385, 0.41394392],
        #     [0.51736701, 0.49921003, 0.38730967],
        #     [0.69078457, 0.42282537, 0.30161136]],
        #
        #    [[0.32043904, 0.18164253, 0.27810261],
        #     [0.50226176, 0.24512935, 0.39881429],
        #     [0.51476848, 0.23367381, 0.39229113]]])
975

T
Tongxin Bai 已提交
976 977 978 979 980 981 982 983
        # Ellipsis transpose
        print(paddle.einsum('...jk->...kj', A))
        # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.95649719, 0.80071914, 0.49814570],
        #     [0.07637714, 0.51470858, 0.99066722]],
        #
        #    [[0.49684682, 0.46258664, 0.33383518],
        #     [0.29374704, 0.51907635, 0.55802226]]])
984

T
Tongxin Bai 已提交
985 986 987 988 989 990 991 992 993 994 995
        # Ellipsis batch matrix multiplication
        print(paddle.einsum('...jk, ...kl->...jl', A,B))
        # Tensor(shape=[2, 3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #   [[[0.32172769, 0.50617385, 0.41394392],
        #     [0.51736701, 0.49921003, 0.38730967],
        #     [0.69078457, 0.42282537, 0.30161136]],
        #
        #    [[0.32043904, 0.18164253, 0.27810261],
        #     [0.50226176, 0.24512935, 0.39881429],
        #     [0.51476848, 0.23367381, 0.39229113]]])
    """
996
    import os
997
    if int(os.environ.get('FLAGS_new_einsum', "1")):
998
        return einsum_v2(equation, *operands)
T
Tongxin Bai 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

    nop = len(operands)
    assert nop > 0, "At least one operand is expected."

    # Part the equation to left hand side and right hand side
    lhs, *rhs = equation.lower().replace(' ', '').split('->')
    assert len(rhs) < 2, "Invalid equation: multiple `->` were found."

    # Note, we distinguish between 'ij->' and 'ij' by setting rhs to '' and None
    rhs = rhs[0] if rhs else None

    # Parse labels for each operand and count the number of occurrences for each alphabet label
    nop_labels = parse_labels(lhs, operands)

    # Diagonalize the operands which have duplicate labels
    nop_labels, operands = list(zip(*map(diagonalize, nop_labels, operands)))

    # To handle broadcasting, we should first know how many dimensions are there
    # We need to use that number to generate output labels
    # e.g. 1 for ['ij', 'i.', '.k']
    n_bcast_dims = max(map(lambda s: s.count('.'), nop_labels))

    # Build the data structures for planning. It's helpful to think of all the operands
1022
    # broadcasting together from a global view. In this view, dimensions from multiple
T
Tongxin Bai 已提交
1023 1024
    # operands are mapped to the same position if they are labeled uniquely. Broadcasting
    # dimensions are mapped to adjacent positions with the right bound fixed. Subject to
1025
    # each operand, the map is injective but for all operands the map is on-to.
T
Tongxin Bai 已提交
1026
    # g_labels:
1027
    #   The labels of the global view
T
Tongxin Bai 已提交
1028 1029 1030 1031 1032 1033 1034 1035
    # g_view:
    #   Includes a list of maps from each operand's dimensions to the global view's dimensions
    #   which we refer to as ax or axes in the code to distinguish from operand's dims
    # g_shape:
    #   The shape of the global view. The size of each dimension is what the aligned dimensions
    #   should broadcast to
    # g_nout:
    #   Number of output axes
1036 1037
    # g_supports
    #   Booleans indicating each operand's non-trivial dimensions
T
Tongxin Bai 已提交
1038 1039 1040
    # g_count
    #   Counting how many non-trivial dimensions remain for each ax

1041 1042
    g_labels, g_view, g_nout, g_count = build_global_view(
        nop_labels, rhs, n_bcast_dims)
1043
    g_shape, g_supports = build_global_shape(g_view, g_labels,
T
Tongxin Bai 已提交
1044 1045 1046
                                             [op.shape for op in operands])

    # Now we're ready to build up an execution plan
1047
    args = operands, g_view, g_shape, g_supports, g_count, n_bcast_dims
T
Tongxin Bai 已提交
1048 1049 1050 1051
    plan = plan_einsum(*args)
    result = plan.execute()

    return result