input.py 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import paddle
from paddle.fluid import core, Variable
S
ShenLiang 已提交
17
from paddle.fluid.layer_helper import LayerHelper
18 19
from paddle.fluid.data_feeder import check_type
from paddle.fluid.framework import convert_np_dtype_to_dtype_
20
from paddle.fluid.framework import static_only
21

22 23
__all__ = []

24

25
@static_only
S
ShenLiang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
def data(name, shape, dtype=None, lod_level=0):
    """
    **Data Layer**

    This function creates a variable on the global block. The global variable
    can be accessed by all the following operators in the graph. The variable
    is a placeholder that could be fed with input, such as Executor can feed
    input into the variable. When `dtype` is None, the dtype
    will get from the global dtype by `paddle.get_default_dtype()`.

    Args:
       name (str): The name/alias of the variable, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" or -1 at a dimension to indicate the dimension can be of any
           size. For example, it is useful to set changeable batch size as "None" or -1.
       dtype (np.dtype|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
44
           uint8. Default: None. When `dtype` is not set, the dtype will get
S
ShenLiang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57
           from the global dtype by `paddle.get_default_dtype()`.
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          import numpy as np
          import paddle
58
          paddle.enable_static()
S
ShenLiang 已提交
59 60 61 62

          # Creates a variable with fixed size [3, 2, 1]
          # User can only feed data of the same shape to x
          # the dtype is not set, so it will set "float32" by
63
          # paddle.get_default_dtype(). You can use paddle.get_default_dtype() to
S
ShenLiang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77
          # change the global dtype
          x = paddle.static.data(name='x', shape=[3, 2, 1])

          # Creates a variable with changeable batch size -1.
          # Users can feed data of any batch size into y,
          # but size of each data sample has to be [2, 1]
          y = paddle.static.data(name='y', shape=[-1, 2, 1], dtype='float32')

          z = x + y

          # In this example, we will feed x and y with np-ndarray "1"
          # and fetch z, like implementing "1 + 1 = 2" in PaddlePaddle
          feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)

78 79
          exe = paddle.static.Executor(paddle.framework.CPUPlace())
          out = exe.run(paddle.static.default_main_program(),
S
ShenLiang 已提交
80 81 82 83 84 85 86 87 88 89 90
                        feed={
                            'x': feed_data,
                            'y': feed_data
                        },
                        fetch_list=[z.name])

          # np-ndarray of shape=[3, 2, 1], dtype=float32, whose elements are 2
          print(out)

    """
    helper = LayerHelper('data', **locals())
91
    check_type(name, 'name', (bytes, str), 'data')
S
ShenLiang 已提交
92 93 94
    check_type(shape, 'shape', (list, tuple), 'data')

    shape = list(shape)
95
    for i in range(len(shape)):
S
ShenLiang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        if shape[i] is None:
            shape[i] = -1

    if dtype:
        return helper.create_global_variable(
            name=name,
            shape=shape,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            stop_gradient=True,
            lod_level=lod_level,
            is_data=True,
            need_check_feed=True)
    else:
        return helper.create_global_variable(
            name=name,
            shape=shape,
            dtype=paddle.get_default_dtype(),
            type=core.VarDesc.VarType.LOD_TENSOR,
            stop_gradient=True,
            lod_level=lod_level,
            is_data=True,
            need_check_feed=True)


121 122
class InputSpec(object):
    """
123 124 125 126 127
    InputSpec describes the signature information of the model input, such as ``shape`` , ``dtype`` , ``name`` .

    This interface is often used to specify input tensor information of models in high-level API.
    It's also used to specify the tensor information for each input parameter of the forward function
    decorated by `@paddle.jit.to_static`.
128 129 130 131 132 133

    Args:
        shape (tuple(integers)|list[integers]): List|Tuple of integers
            declaring the shape. You can set "None" or -1 at a dimension
            to indicate the dimension can be of any size. For example,
            it is useful to set changeable batch size as "None" or -1.
S
ShenLiang 已提交
134
        dtype (np.dtype|str, optional): The type of the data. Supported
135 136
            dtype: bool, float16, float32, float64, int8, int16, int32, int64,
            uint8. Default: float32.
137 138
        name (str): The name/alias of the variable, see :ref:`api_guide_Name`
            for more details.
139 140 141 142

    Examples:
        .. code-block:: python

143 144 145 146
            from paddle.static import InputSpec

            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
147

148 149
            print(input)  # InputSpec(shape=(-1, 784), dtype=paddle.float32, name=x)
            print(label)  # InputSpec(shape=(-1, 1), dtype=paddle.int64, name=label)
150 151
    """

152 153 154 155 156 157 158
    def __init__(self, shape, dtype='float32', name=None):
        # replace `None` in shape  with -1
        self.shape = self._verify(shape)
        # convert dtype into united represention
        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)
159 160 161 162 163 164 165 166 167
        self.dtype = dtype
        self.name = name

    def _create_feed_layer(self):
        return data(self.name, shape=self.shape, dtype=self.dtype)

    def __repr__(self):
        return '{}(shape={}, dtype={}, name={})'.format(
            type(self).__name__, self.shape, self.dtype, self.name)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    @classmethod
    def from_tensor(cls, tensor, name=None):
        """
        Generates a InputSpec based on the description of input tensor.

        Args:
            tensor(Tensor): the source tensor to generate a InputSpec instance

        Returns:
            A InputSpec instance generated from Tensor.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                from paddle.static import InputSpec

                paddle.disable_static()

                x = paddle.to_tensor(np.ones([2, 2], np.float32))
                x_spec = InputSpec.from_tensor(x, name='x')
191
                print(x_spec)  # InputSpec(shape=(2, 2), dtype=paddle.float32, name=x)
192 193

        """
0
0x45f 已提交
194
        if isinstance(tensor, (Variable, core.VarBase, core.eager.Tensor)):
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
            return cls(tensor.shape, tensor.dtype, name or tensor.name)
        else:
            raise ValueError(
                "Input `tensor` should be a Tensor, but received {}.".format(
                    type(tensor).__name__))

    @classmethod
    def from_numpy(cls, ndarray, name=None):
        """
        Generates a InputSpec based on the description of input np.ndarray.

        Args:
            tensor(Tensor): the source numpy ndarray to generate a InputSpec instance

        Returns:
            A InputSpec instance generated from Tensor.

        Examples:
            .. code-block:: python

                import numpy as np
                from paddle.static import InputSpec

                x = np.ones([2, 2], np.float32)
                x_spec = InputSpec.from_numpy(x, name='x')
220
                print(x_spec)  # InputSpec(shape=(2, 2), dtype=paddle.float32, name=x)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

        """
        return cls(ndarray.shape, ndarray.dtype, name)

    def batch(self, batch_size):
        """
        Inserts `batch_size` in front of the `shape`.

        Args:
            batch_size(int): the inserted integer value of batch size.

        Returns:
            The original InputSpec instance by inserting `batch_size` in front of `shape`.

        Examples:
            .. code-block:: python

                from paddle.static import InputSpec

                x_spec = InputSpec(shape=[64], dtype='float32', name='x')
                x_spec.batch(4)
242
                print(x_spec) # InputSpec(shape=(4, 64), dtype=paddle.float32, name=x)
243 244 245 246 247 248 249 250

        """
        if isinstance(batch_size, (list, tuple)):
            if len(batch_size) != 1:
                raise ValueError(
                    "Length of batch_size: {} shall be 1, but received {}.".
                    format(batch_size, len(batch_size)))
            batch_size = batch_size[1]
251
        elif not isinstance(batch_size, int):
252 253 254
            raise TypeError(
                "type(batch_size) shall be `int`, but received {}.".format(
                    type(batch_size).__name__))
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

        new_shape = [batch_size] + list(self.shape)
        self.shape = tuple(new_shape)

        return self

    def unbatch(self):
        """
        Removes the first element of `shape`.

        Returns:
            The original InputSpec instance by removing the first element of `shape` .

        Examples:
            .. code-block:: python

                from paddle.static import InputSpec

                x_spec = InputSpec(shape=[4, 64], dtype='float32', name='x')
                x_spec.unbatch()
275
                print(x_spec) # InputSpec(shape=(64,), dtype=paddle.float32, name=x)
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

        """
        if len(self.shape) == 0:
            raise ValueError(
                "Not support to unbatch a InputSpec when len(shape) == 0.")

        self.shape = self._verify(self.shape[1:])
        return self

    def _verify(self, shape):
        """
        Verifies the input shape and modifies `None` into `-1`.
        """
        if not isinstance(shape, (list, tuple)):
            raise TypeError(
291 292
                "Type of `shape` in InputSpec should be one of (tuple, list), but received {}."
                .format(type(shape).__name__))
293 294
        if len(shape) == 0:
            raise ValueError(
295 296
                "`shape` in InputSpec should contain at least 1 element, but received {}."
                .format(shape))
297 298 299

        for i, ele in enumerate(shape):
            if ele is not None:
300
                if not isinstance(ele, int):
301 302
                    raise ValueError(
                        "shape[{}] should be an `int`, but received `{}`:{}.".
303 304
                        format(i,
                               type(ele).__name__, ele))
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
            if ele is None or ele < -1:
                shape[i] = -1

        return tuple(shape)

    def __hash__(self):
        # Note(Aurelius84): `name` is not considered as a field to compute hashkey.
        # Because it's no need to generate a new program in following cases while using
        # @paddle.jit.to_static.
        #
        # Case 1:
        #      foo(x_var)
        #      foo(y_var)
        #  x_var and y_var hold same shape and dtype, they should share a same program.
        #
        #
        # Case 2:
        #      foo(x_var)
        #      foo(x_np)  # x_np is a numpy.ndarray.
        #  x_var and x_np hold same shape and dtype, they should also share a same program.
        return hash((tuple(self.shape), self.dtype))

    def __eq__(self, other):
        slots = ['shape', 'dtype', 'name']
        return (type(self) is type(other) and all(
            getattr(self, attr) == getattr(other, attr) for attr in slots))

    def __ne__(self, other):
        return not self == other