input.py 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
ShenLiang 已提交
15 16
import six

17 18
import paddle
from paddle.fluid import core, Variable
S
ShenLiang 已提交
19
from paddle.fluid.layer_helper import LayerHelper
20 21
from paddle.fluid.data_feeder import check_type
from paddle.fluid.framework import convert_np_dtype_to_dtype_
22
from paddle.fluid.framework import static_only
23 24 25 26

__all__ = ['data', 'InputSpec']


27
@static_only
S
ShenLiang 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def data(name, shape, dtype=None, lod_level=0):
    """
    **Data Layer**

    This function creates a variable on the global block. The global variable
    can be accessed by all the following operators in the graph. The variable
    is a placeholder that could be fed with input, such as Executor can feed
    input into the variable. When `dtype` is None, the dtype
    will get from the global dtype by `paddle.get_default_dtype()`.

    Args:
       name (str): The name/alias of the variable, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" or -1 at a dimension to indicate the dimension can be of any
           size. For example, it is useful to set changeable batch size as "None" or -1.
       dtype (np.dtype|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
46
           uint8. Default: None. When `dtype` is not set, the dtype will get
S
ShenLiang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
           from the global dtype by `paddle.get_default_dtype()`.
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          import numpy as np
          import paddle

          # Creates a variable with fixed size [3, 2, 1]
          # User can only feed data of the same shape to x
          # the dtype is not set, so it will set "float32" by
64
          # paddle.get_default_dtype(). You can use paddle.get_default_dtype() to
S
ShenLiang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78
          # change the global dtype
          x = paddle.static.data(name='x', shape=[3, 2, 1])

          # Creates a variable with changeable batch size -1.
          # Users can feed data of any batch size into y,
          # but size of each data sample has to be [2, 1]
          y = paddle.static.data(name='y', shape=[-1, 2, 1], dtype='float32')

          z = x + y

          # In this example, we will feed x and y with np-ndarray "1"
          # and fetch z, like implementing "1 + 1 = 2" in PaddlePaddle
          feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)

79 80
          exe = paddle.static.Executor(paddle.framework.CPUPlace())
          out = exe.run(paddle.static.default_main_program(),
S
ShenLiang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                        feed={
                            'x': feed_data,
                            'y': feed_data
                        },
                        fetch_list=[z.name])

          # np-ndarray of shape=[3, 2, 1], dtype=float32, whose elements are 2
          print(out)

    """
    helper = LayerHelper('data', **locals())
    check_type(name, 'name', (six.binary_type, six.text_type), 'data')
    check_type(shape, 'shape', (list, tuple), 'data')

    shape = list(shape)
    for i in six.moves.range(len(shape)):
        if shape[i] is None:
            shape[i] = -1

    if dtype:
        return helper.create_global_variable(
            name=name,
            shape=shape,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            stop_gradient=True,
            lod_level=lod_level,
            is_data=True,
            need_check_feed=True)
    else:
        return helper.create_global_variable(
            name=name,
            shape=shape,
            dtype=paddle.get_default_dtype(),
            type=core.VarDesc.VarType.LOD_TENSOR,
            stop_gradient=True,
            lod_level=lod_level,
            is_data=True,
            need_check_feed=True)


122 123
class InputSpec(object):
    """
124 125 126 127 128
    InputSpec describes the signature information of the model input, such as ``shape`` , ``dtype`` , ``name`` .

    This interface is often used to specify input tensor information of models in high-level API.
    It's also used to specify the tensor information for each input parameter of the forward function
    decorated by `@paddle.jit.to_static`.
129 130 131 132 133 134

    Args:
        shape (tuple(integers)|list[integers]): List|Tuple of integers
            declaring the shape. You can set "None" or -1 at a dimension
            to indicate the dimension can be of any size. For example,
            it is useful to set changeable batch size as "None" or -1.
S
ShenLiang 已提交
135
        dtype (np.dtype|str, optional): The type of the data. Supported
136 137
            dtype: bool, float16, float32, float64, int8, int16, int32, int64,
            uint8. Default: float32.
138 139
        name (str): The name/alias of the variable, see :ref:`api_guide_Name`
            for more details.
140 141 142 143

    Examples:
        .. code-block:: python

144 145 146 147
            from paddle.static import InputSpec

            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
148

149 150
            print(input)  # InputSpec(shape=(-1, 784), dtype=VarType.FP32, name=x)
            print(label)  # InputSpec(shape=(-1, 1), dtype=VarType.INT64, name=label)
151 152
    """

153 154 155 156 157 158 159
    def __init__(self, shape, dtype='float32', name=None):
        # replace `None` in shape  with -1
        self.shape = self._verify(shape)
        # convert dtype into united represention
        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)
160 161 162 163 164 165 166 167 168
        self.dtype = dtype
        self.name = name

    def _create_feed_layer(self):
        return data(self.name, shape=self.shape, dtype=self.dtype)

    def __repr__(self):
        return '{}(shape={}, dtype={}, name={})'.format(
            type(self).__name__, self.shape, self.dtype, self.name)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

    @classmethod
    def from_tensor(cls, tensor, name=None):
        """
        Generates a InputSpec based on the description of input tensor.

        Args:
            tensor(Tensor): the source tensor to generate a InputSpec instance

        Returns:
            A InputSpec instance generated from Tensor.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                from paddle.static import InputSpec

                paddle.disable_static()

                x = paddle.to_tensor(np.ones([2, 2], np.float32))
                x_spec = InputSpec.from_tensor(x, name='x')
                print(x_spec)  # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x)

        """
        if isinstance(tensor, (Variable, core.VarBase)):
            return cls(tensor.shape, tensor.dtype, name or tensor.name)
        else:
            raise ValueError(
                "Input `tensor` should be a Tensor, but received {}.".format(
                    type(tensor).__name__))

    @classmethod
    def from_numpy(cls, ndarray, name=None):
        """
        Generates a InputSpec based on the description of input np.ndarray.

        Args:
            tensor(Tensor): the source numpy ndarray to generate a InputSpec instance

        Returns:
            A InputSpec instance generated from Tensor.

        Examples:
            .. code-block:: python

                import numpy as np
                from paddle.static import InputSpec

                x = np.ones([2, 2], np.float32)
                x_spec = InputSpec.from_numpy(x, name='x')
                print(x_spec)  # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x)

        """
        return cls(ndarray.shape, ndarray.dtype, name)

    def batch(self, batch_size):
        """
        Inserts `batch_size` in front of the `shape`.

        Args:
            batch_size(int): the inserted integer value of batch size.

        Returns:
            The original InputSpec instance by inserting `batch_size` in front of `shape`.

        Examples:
            .. code-block:: python

                from paddle.static import InputSpec

                x_spec = InputSpec(shape=[64], dtype='float32', name='x')
                x_spec.batch(4)
                print(x_spec) # InputSpec(shape=(4, 64), dtype=VarType.FP32, name=x)

        """
        if isinstance(batch_size, (list, tuple)):
            if len(batch_size) != 1:
                raise ValueError(
                    "Length of batch_size: {} shall be 1, but received {}.".
                    format(batch_size, len(batch_size)))
            batch_size = batch_size[1]
        elif not isinstance(batch_size, six.integer_types):
            raise TypeError("type(batch_size) shall be `int`, but received {}.".
                            format(type(batch_size).__name__))

        new_shape = [batch_size] + list(self.shape)
        self.shape = tuple(new_shape)

        return self

    def unbatch(self):
        """
        Removes the first element of `shape`.

        Returns:
            The original InputSpec instance by removing the first element of `shape` .

        Examples:
            .. code-block:: python

                from paddle.static import InputSpec

                x_spec = InputSpec(shape=[4, 64], dtype='float32', name='x')
                x_spec.unbatch()
                print(x_spec) # InputSpec(shape=(64,), dtype=VarType.FP32, name=x)

        """
        if len(self.shape) == 0:
            raise ValueError(
                "Not support to unbatch a InputSpec when len(shape) == 0.")

        self.shape = self._verify(self.shape[1:])
        return self

    def _verify(self, shape):
        """
        Verifies the input shape and modifies `None` into `-1`.
        """
        if not isinstance(shape, (list, tuple)):
            raise TypeError(
                "Type of `shape` in InputSpec should be one of (tuple, list), but received {}.".
                format(type(shape).__name__))
        if len(shape) == 0:
            raise ValueError(
                "`shape` in InputSpec should contain at least 1 element, but received {}.".
                format(shape))

        for i, ele in enumerate(shape):
            if ele is not None:
                if not isinstance(ele, six.integer_types):
                    raise ValueError(
                        "shape[{}] should be an `int`, but received `{}`:{}.".
                        format(i, type(ele).__name__, ele))
            if ele is None or ele < -1:
                shape[i] = -1

        return tuple(shape)

    def __hash__(self):
        # Note(Aurelius84): `name` is not considered as a field to compute hashkey.
        # Because it's no need to generate a new program in following cases while using
        # @paddle.jit.to_static.
        #
        # Case 1:
        #      foo(x_var)
        #      foo(y_var)
        #  x_var and y_var hold same shape and dtype, they should share a same program.
        #
        #
        # Case 2:
        #      foo(x_var)
        #      foo(x_np)  # x_np is a numpy.ndarray.
        #  x_var and x_np hold same shape and dtype, they should also share a same program.
        return hash((tuple(self.shape), self.dtype))

    def __eq__(self, other):
        slots = ['shape', 'dtype', 'name']
        return (type(self) is type(other) and all(
            getattr(self, attr) == getattr(other, attr) for attr in slots))

    def __ne__(self, other):
        return not self == other