lbfgs.py 11.0 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from .line_search import strong_wolfe
from .utils import _value_and_gradient, check_input_type, check_initial_inverse_hessian_estimate

import paddle


def minimize_lbfgs(objective_func,
                   initial_position,
                   history_size=100,
                   max_iters=50,
                   tolerance_grad=1e-8,
                   tolerance_change=1e-8,
                   initial_inverse_hessian_estimate=None,
                   line_search_fn='strong_wolfe',
                   max_line_search_iters=50,
                   initial_step_length=1.0,
                   dtype='float32',
                   name=None):
S
Sing_chan 已提交
35 36 37 38 39 40 41 42 43
    r"""
    Minimizes a differentiable function `func` using the L-BFGS method.
    The L-BFGS is a quasi-Newton method for solving an unconstrained optimization problem over a differentiable function.
    Closely related is the Newton method for minimization. Consider the iterate update formula:

    .. math::
        x_{k+1} = x_{k} + H_k \nabla{f_k}

    If :math:`H_k` is the inverse Hessian of :math:`f` at :math:`x_k`, then it's the Newton method.
44
    If :math:`H_k` is symmetric and positive definite, used as an approximation of the inverse Hessian, then
S
Sing_chan 已提交
45
    it's a quasi-Newton. In practice, the approximated Hessians are obtained
46
    by only using the gradients, over either whole or part of the search
S
Sing_chan 已提交
47
    history, the former is BFGS, the latter is L-BFGS.
48

S
Sing_chan 已提交
49 50
    Reference:
        Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006. pp179: Algorithm 7.5 (L-BFGS).
51 52

    Args:
53
        objective_func: the objective function to minimize. ``objective_func`` accepts a 1D Tensor and returns a scalar.
54
        initial_position (Tensor): the starting point of the iterates, has the same shape with the input of ``objective_func`` .
S
Sing_chan 已提交
55 56 57 58
        history_size (Scalar): the number of stored vector pairs {si,yi}. Default value: 100.
        max_iters (int, optional): the maximum number of minimization iterations. Default value: 50.
        tolerance_grad (float, optional): terminates if the gradient norm is smaller than this. Currently gradient norm uses inf norm. Default value: 1e-7.
        tolerance_change (float, optional): terminates if the change of function value/position/parameter between two iterations is smaller than this value. Default value: 1e-9.
59
        initial_inverse_hessian_estimate (Tensor, optional): the initial inverse hessian approximation at initial_position. It must be symmetric and positive definite. If not given, will use an identity matrix of order N, which is size of ``initial_position`` . Default value: None.
S
Sing_chan 已提交
60 61 62
        line_search_fn (str, optional): indicate which line search method to use, only support 'strong wolfe' right now. May support 'Hager Zhang' in the futrue. Default value: 'strong wolfe'.
        max_line_search_iters (int, optional): the maximum number of line search iterations. Default value: 50.
        initial_step_length (float, optional): step length used in first iteration of line search. different initial_step_length may cause different optimal result. For methods like Newton and quasi-Newton the initial trial step length should always be 1.0. Default value: 1.0.
63
        dtype ('float32' | 'float64', optional): data type used in the algorithm, the data type of the input parameter must be consistent with the dtype. Default value: 'float32'.
S
Sing_chan 已提交
64 65
        name (str, optional): Name for the operation. For more information, please refer to :ref:`api_guide_Name`. Default value: None.

66
    Returns:
S
Sing_chan 已提交
67
        output(tuple):
68

S
Sing_chan 已提交
69 70 71 72 73
            - is_converge (bool): Indicates whether found the minimum within tolerance.
            - num_func_calls (int): number of objective function called.
            - position (Tensor): the position of the last iteration. If the search converged, this value is the argmin of the objective function regrading to the initial position.
            - objective_value (Tensor): objective function value at the `position`.
            - objective_gradient (Tensor): objective function gradient at the `position`.
74

75 76 77 78
    Examples:
        .. code-block:: python

            import paddle
79

80 81 82 83
            def func(x):
                return paddle.dot(x, x)

            x0 = paddle.to_tensor([1.3, 2.7])
84
            results = paddle.incubate.optimizer.functional.minimize_lbfgs(func, x0)
85 86 87 88 89 90 91 92 93
            print("is_converge: ", results[0])
            print("the minimum of func is: ", results[2])
            # is_converge:  is_converge:  Tensor(shape=[1], dtype=bool, place=Place(gpu:0), stop_gradient=True,
            #        [True])
            # the minimum of func is:  Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0., 0.])
    """
    if dtype not in ['float32', 'float64']:
        raise ValueError(
94 95
            "The dtype must be 'float32' or 'float64', but the specified is {}."
            .format(dtype))
96 97 98 99 100 101 102 103 104 105 106 107

    op_name = 'minimize_lbfgs'
    check_input_type(initial_position, 'initial_position', op_name)

    if initial_inverse_hessian_estimate is None:
        H0 = paddle.eye(initial_position.shape[0], dtype=dtype)
    else:
        check_input_type(initial_inverse_hessian_estimate,
                         'initial_inverse_hessian_estimate', op_name)
        check_initial_inverse_hessian_estimate(initial_inverse_hessian_estimate)
        H0 = initial_inverse_hessian_estimate

108 109
    # use detach and assign to create new tensor rather than =, or xk will share memory and grad with initial_position
    xk = paddle.assign(initial_position.detach())
110 111 112 113 114 115 116
    value, g1 = _value_and_gradient(objective_func, xk)

    k = paddle.full(shape=[1], fill_value=0, dtype='int64')
    done = paddle.full(shape=[1], fill_value=False, dtype='bool')
    is_converge = paddle.full(shape=[1], fill_value=False, dtype='bool')
    num_func_calls = paddle.full(shape=[1], fill_value=1, dtype='int64')

117 118 119
    history_size = paddle.full(shape=[1],
                               fill_value=history_size,
                               dtype='int64')
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    head = paddle.full(shape=[1], fill_value=1, dtype='int64')
    tail = paddle.full(shape=[1], fill_value=0, dtype='int64')

    shape = initial_position.shape[0]
    # Use tensor as array of fixed length, rather than flexible tensor array. Because in static mode,
    # tensor array will produce tensor of shape[-1], which will cause error when calling jacobian. In this way, can not use append
    # or pop, so we need head and tail to record where is the newest data and where is the oldest.
    # Totally speaking, realized a stack by array.
    sk_vec = paddle.zeros((history_size + 1, shape), dtype=dtype)
    yk_vec = paddle.zeros((history_size + 1, shape), dtype=dtype)
    rhok_vec = paddle.zeros((history_size + 1, 1), dtype=dtype)
    ai_vec = paddle.zeros((history_size + 1, 1), dtype=dtype)

    def cond(k, done, is_converge, num_func_calls, value, xk, g1, sk_vec,
             yk_vec, rhok_vec, head, tail):
        return (k < max_iters) & ~done

    def body(k, done, is_converge, num_func_calls, value, xk, g1, sk_vec,
             yk_vec, rhok_vec, head, tail):
        # use assign to cut off the relevance between g1 and q, or they will change together.

        #############    compute p_k by two-loop recursion    #############
        q = paddle.assign(g1)
        # In a array circle, the index may out of range, so must use mod.
144 145 146
        i = paddle.full(shape=[1],
                        fill_value=(head - 1).mod(history_size),
                        dtype='int64')
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

        def cond(i, q):
            return i != tail

        def body(i, q):
            ai_vec[i] = rhok_vec[i] * paddle.dot(sk_vec[i], q)
            q = q - ai_vec[i] * yk_vec[i]
            i = (i - 1).mod(history_size)
            return i, q

        paddle.static.nn.while_loop(cond=cond, body=body, loop_vars=[i, q])

        r = paddle.matmul(H0, q)

        i = paddle.full(shape=[1], fill_value=tail + 1, dtype='int64')

        def cond(i, r):
            return i != head

        def body(i, r):
            beta = rhok_vec[i] * paddle.dot(yk_vec[i], r)
            r = r + sk_vec[i] * (ai_vec[i] - beta)
            i = (i + 1).mod(history_size)
            return i, r

        paddle.static.nn.while_loop(cond=cond, body=body, loop_vars=[i, r])

        pk = -r

        #############    compute alpha by line serach    #############
        if line_search_fn == 'strong_wolfe':
            alpha, value, g2, ls_func_calls = strong_wolfe(
                f=objective_func,
                xk=xk,
                pk=pk,
                initial_step_length=initial_step_length,
                dtype=dtype)
        else:
            raise NotImplementedError(
186 187
                "Currently only support line_search_fn = 'strong_wolfe', but the specified is '{}'"
                .format(line_search_fn))
188 189 190 191 192 193 194 195
        paddle.assign(num_func_calls + ls_func_calls, num_func_calls)

        #############    update sk_vec, yk_vec, rhok_vec    #############
        sk = alpha * pk
        yk = g2 - g1

        rhok_inv = paddle.dot(yk, sk)
        rhok = paddle.static.nn.cond(
196 197 198
            rhok_inv == 0.,
            lambda: paddle.full(shape=[1], fill_value=1000.0, dtype=dtype),
            lambda: 1. / rhok_inv)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

        sk_vec[head] = sk
        yk_vec[head] = yk
        rhok_vec[head] = rhok
        head = (head + 1) % history_size

        def true_fn(tail):
            paddle.assign(tail + 1, tail)

        # when array is full, the tail should move forward too.
        paddle.static.nn.cond(head == tail, lambda: true_fn(tail), None)

        xk = xk + sk
        g1 = g2
        k += 1

        #############    check convergence    #############
        gnorm = paddle.linalg.norm(g1, p=np.inf)
        pk_norm = paddle.linalg.norm(pk, p=np.inf)
218 219 220
        paddle.assign(
            done | (gnorm < tolerance_grad) | (pk_norm < tolerance_change),
            done)
221 222 223 224 225 226 227 228 229
        paddle.assign(done, is_converge)
        # when alpha=0, there is no chance to get xk change.
        paddle.assign(done | (alpha == 0.), done)

        return [
            k, done, is_converge, num_func_calls, value, xk, g1, sk_vec, yk_vec,
            rhok_vec, head, tail
        ]

230 231 232 233 234 235
    paddle.static.nn.while_loop(cond=cond,
                                body=body,
                                loop_vars=[
                                    k, done, is_converge, num_func_calls, value,
                                    xk, g1, sk_vec, yk_vec, rhok_vec, head, tail
                                ])
236
    return is_converge, num_func_calls, xk, value, g1