lbfgs.py 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from .line_search import strong_wolfe
from .utils import _value_and_gradient, check_input_type, check_initial_inverse_hessian_estimate

import paddle


def minimize_lbfgs(objective_func,
                   initial_position,
                   history_size=100,
                   max_iters=50,
                   tolerance_grad=1e-8,
                   tolerance_change=1e-8,
                   initial_inverse_hessian_estimate=None,
                   line_search_fn='strong_wolfe',
                   max_line_search_iters=50,
                   initial_step_length=1.0,
                   dtype='float32',
                   name=None):
    r"""Minimizes a differentiable function `func` using the L-BFGS method.
    The L-BFGS is simalar as BFGS, the only difference is that L-BFGS use historical
    sk, yk, rhok rather than H_k-1 to compute Hk.
    Reference:
        Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006.
        pp179: Algorithm 7.5 (L-BFGS).

    Following summarizes the the main logic of the program based on L-BFGS.Note: _k represents 
    value of k_th iteration, ^T represents the transposition of a vector or matrix.
    repeat
        compute p_k by two-loop recursion
        alpha = strong_wolfe(f, x_k, p_k)
        x_k+1 = x_k + alpha * p_k
        s_k = x_k+1 - x_k
        y_k = g_k+1 - g_k
        rho_k = 1 / (s_k^T * y_k)
        update sk_vec, yk_vec, rhok_vec
        check_converge
    end 

    Args:
        objective_func: the objective function to minimize. ``func`` accepts
            a multivariate input and returns a scalar.
        initial_position (Tensor): the starting point of the iterates. For methods like Newton and quasi-Newton 
        the initial trial step length should always be 1.0 .
        history_size (Scalar): the number of stored vector pairs {si,yi}.
        max_iters (Scalar): the maximum number of minimization iterations.
        tolerance_grad (Scalar): terminates if the gradient norm is smaller than
            this. Currently gradient norm uses inf norm.
        tolerance_change (Scalar): terminates if the change of function value/position/parameter between 
            two iterations is smaller than this value.
        initial_inverse_hessian_estimate (Tensor): the initial inverse hessian approximation.
        line_search_fn (str): indicate which line search method to use, only support 'strong wolfe' right now. May support 
            'Hager Zhang' in the futrue.
        max_line_search_iters (Scalar): the maximum number of line search iterations.
        initial_step_length: step length used in first iteration of line search. different initial_step_length 
        may cause different optimal result.
        dtype ('float' | 'float32' | 'float64' | 'double'): the data
            type to be used.
    
    Returns:
        is_converge (bool): Indicates whether found the minimum within tolerance.
        num_func_calls (int): number of objective function called.
        position (Tensor): the position of the last iteration. If the search converged, this value is the argmin of 
        the objective function regrading to the initial position.
        objective_value (Tensor): objective function value at the `position`.
        objective_gradient (Tensor): objective function gradient at the `position`.

    Examples:
        .. code-block:: python

            import paddle
            
            def func(x):
                return paddle.dot(x, x)

            x0 = paddle.to_tensor([1.3, 2.7])
92
            results = paddle.incubate.optimizer.functional.minimize_lbfgs(func, x0)
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            print("is_converge: ", results[0])
            print("the minimum of func is: ", results[2])
            # is_converge:  is_converge:  Tensor(shape=[1], dtype=bool, place=Place(gpu:0), stop_gradient=True,
            #        [True])
            # the minimum of func is:  Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0., 0.])
    """
    if dtype not in ['float32', 'float64']:
        raise ValueError(
            "The dtype must be 'float32' or 'float64', but the specified is {}.".
            format(dtype))

    op_name = 'minimize_lbfgs'
    check_input_type(initial_position, 'initial_position', op_name)

    if initial_inverse_hessian_estimate is None:
        H0 = paddle.eye(initial_position.shape[0], dtype=dtype)
    else:
        check_input_type(initial_inverse_hessian_estimate,
                         'initial_inverse_hessian_estimate', op_name)
        check_initial_inverse_hessian_estimate(initial_inverse_hessian_estimate)
        H0 = initial_inverse_hessian_estimate

116 117
    # use detach and assign to create new tensor rather than =, or xk will share memory and grad with initial_position
    xk = paddle.assign(initial_position.detach())
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    value, g1 = _value_and_gradient(objective_func, xk)

    k = paddle.full(shape=[1], fill_value=0, dtype='int64')
    done = paddle.full(shape=[1], fill_value=False, dtype='bool')
    is_converge = paddle.full(shape=[1], fill_value=False, dtype='bool')
    num_func_calls = paddle.full(shape=[1], fill_value=1, dtype='int64')

    history_size = paddle.full(
        shape=[1], fill_value=history_size, dtype='int64')
    head = paddle.full(shape=[1], fill_value=1, dtype='int64')
    tail = paddle.full(shape=[1], fill_value=0, dtype='int64')

    shape = initial_position.shape[0]
    # Use tensor as array of fixed length, rather than flexible tensor array. Because in static mode,
    # tensor array will produce tensor of shape[-1], which will cause error when calling jacobian. In this way, can not use append
    # or pop, so we need head and tail to record where is the newest data and where is the oldest.
    # Totally speaking, realized a stack by array.
    sk_vec = paddle.zeros((history_size + 1, shape), dtype=dtype)
    yk_vec = paddle.zeros((history_size + 1, shape), dtype=dtype)
    rhok_vec = paddle.zeros((history_size + 1, 1), dtype=dtype)
    ai_vec = paddle.zeros((history_size + 1, 1), dtype=dtype)

    def cond(k, done, is_converge, num_func_calls, value, xk, g1, sk_vec,
             yk_vec, rhok_vec, head, tail):
        return (k < max_iters) & ~done

    def body(k, done, is_converge, num_func_calls, value, xk, g1, sk_vec,
             yk_vec, rhok_vec, head, tail):
        # use assign to cut off the relevance between g1 and q, or they will change together.

        #############    compute p_k by two-loop recursion    #############
        q = paddle.assign(g1)
        # In a array circle, the index may out of range, so must use mod.
        i = paddle.full(
            shape=[1], fill_value=(head - 1).mod(history_size), dtype='int64')

        def cond(i, q):
            return i != tail

        def body(i, q):
            ai_vec[i] = rhok_vec[i] * paddle.dot(sk_vec[i], q)
            q = q - ai_vec[i] * yk_vec[i]
            i = (i - 1).mod(history_size)
            return i, q

        paddle.static.nn.while_loop(cond=cond, body=body, loop_vars=[i, q])

        r = paddle.matmul(H0, q)

        i = paddle.full(shape=[1], fill_value=tail + 1, dtype='int64')

        def cond(i, r):
            return i != head

        def body(i, r):
            beta = rhok_vec[i] * paddle.dot(yk_vec[i], r)
            r = r + sk_vec[i] * (ai_vec[i] - beta)
            i = (i + 1).mod(history_size)
            return i, r

        paddle.static.nn.while_loop(cond=cond, body=body, loop_vars=[i, r])

        pk = -r

        #############    compute alpha by line serach    #############
        if line_search_fn == 'strong_wolfe':
            alpha, value, g2, ls_func_calls = strong_wolfe(
                f=objective_func,
                xk=xk,
                pk=pk,
                initial_step_length=initial_step_length,
                dtype=dtype)
        else:
            raise NotImplementedError(
                "Currently only support line_search_fn = 'strong_wolfe', but the specified is '{}'".
                format(line_search_fn))
        paddle.assign(num_func_calls + ls_func_calls, num_func_calls)

        #############    update sk_vec, yk_vec, rhok_vec    #############
        sk = alpha * pk
        yk = g2 - g1

        rhok_inv = paddle.dot(yk, sk)
        rhok = paddle.static.nn.cond(
            rhok_inv == 0., lambda: paddle.full(shape=[1], fill_value=1000.0, dtype=dtype), lambda: 1. / rhok_inv)

        sk_vec[head] = sk
        yk_vec[head] = yk
        rhok_vec[head] = rhok
        head = (head + 1) % history_size

        def true_fn(tail):
            paddle.assign(tail + 1, tail)

        # when array is full, the tail should move forward too.
        paddle.static.nn.cond(head == tail, lambda: true_fn(tail), None)

        xk = xk + sk
        g1 = g2
        k += 1

        #############    check convergence    #############
        gnorm = paddle.linalg.norm(g1, p=np.inf)
        pk_norm = paddle.linalg.norm(pk, p=np.inf)
        paddle.assign(done | (gnorm < tolerance_grad) |
                      (pk_norm < tolerance_change), done)
        paddle.assign(done, is_converge)
        # when alpha=0, there is no chance to get xk change.
        paddle.assign(done | (alpha == 0.), done)

        return [
            k, done, is_converge, num_func_calls, value, xk, g1, sk_vec, yk_vec,
            rhok_vec, head, tail
        ]

    paddle.static.nn.while_loop(
        cond=cond,
        body=body,
        loop_vars=[
            k, done, is_converge, num_func_calls, value, xk, g1, sk_vec, yk_vec,
            rhok_vec, head, tail
        ])
    return is_converge, num_func_calls, xk, value, g1