test_imperative_recurrent_usage.py 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle.fluid as fluid
17
import paddle
18
import paddle.fluid.core as core
19
from paddle.fluid.framework import _test_eager_guard
20 21 22 23 24 25
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope
import numpy as np


class RecurrentTest(fluid.Layer):
26

27 28 29 30 31 32 33 34 35 36
    def __init__(self, name_scope):
        super(RecurrentTest, self).__init__(name_scope)

    def forward(self, in1, in2):
        out = fluid.layers.mul(in1, in2)
        sum_out = fluid.layers.reduce_sum(out)
        return sum_out, out


class TestRecurrentFeed(unittest.TestCase):
37

38 39 40 41 42 43
    def test_recurrent_feed(self):

        seed = 90
        original_np1 = np.arange(1, 5).reshape(2, 2).astype("float32")
        original_np2 = np.arange(5, 9).reshape(2, 2).astype("float32")
        with fluid.dygraph.guard():
44
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
45 46 47 48
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            original_in1 = to_variable(original_np1)
            original_in2 = to_variable(original_np2)
49 50
            original_in1.stop_gradient = False
            original_in2.stop_gradient = False
51 52 53 54 55 56 57
            rt = RecurrentTest("RecurrentTest")

            for i in range(3):
                sum_out, out = rt(original_in1, original_in2)
                original_in1 = out
                sum_out_value = sum_out.numpy()
                sum_out.backward()
58
                dyout = out.gradient()
59
                original_in1.stop_gradient = True
60
                rt.clear_gradients()
61
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
62

63
        with fluid.dygraph.guard():
64
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
            with _test_eager_guard():
                fluid.default_startup_program().random_seed = seed
                fluid.default_main_program().random_seed = seed
                original_in1 = to_variable(original_np1)
                original_in2 = to_variable(original_np2)
                original_in1.stop_gradient = False
                original_in2.stop_gradient = False
                rt = RecurrentTest("RecurrentTest")

                for i in range(3):
                    sum_out, out = rt(original_in1, original_in2)
                    original_in1 = out
                    eager_sum_out_value = sum_out.numpy()
                    sum_out.backward()
                    eager_dyout = out.gradient()
                    original_in1.stop_gradient = True
                    rt.clear_gradients()
82
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
83

84 85 86
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
87 88 89 90 91 92
            in1 = fluid.layers.data(name="inp1",
                                    shape=[2, 2],
                                    append_batch_size=False)
            in2 = fluid.layers.data(name="inp2",
                                    shape=[2, 2],
                                    append_batch_size=False)
93 94 95 96 97 98
            rt1 = RecurrentTest("RecurrentTest")
            static_sum_out, static_out = rt1(in1, in2)
            fluid.backward.append_backward(static_sum_out)
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

99 100 101
            static_dout = fluid.default_main_program().block(
                0)._find_var_recursive(static_out.name + "@GRAD")
            fetch_list = [static_sum_out, static_out, static_dout]
102
            for i in range(3):
103 104 105 106 107 108
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "inp1": original_np1,
                                  "inp2": original_np2
                              },
                              fetch_list=fetch_list)
109 110
                static_out_value = out[1]
                static_sum_out = out[0]
111
                static_dout = out[2]
112 113
                original_np1 = static_out_value

114 115 116 117
        np.testing.assert_array_equal(static_sum_out, sum_out_value)
        np.testing.assert_array_equal(static_sum_out, eager_sum_out_value)
        np.testing.assert_array_equal(static_dout, dyout)
        np.testing.assert_array_equal(static_dout, eager_dyout)
118 119 120


if __name__ == '__main__':
121
    paddle.enable_static()
122
    unittest.main()