test_imperative_recurrent_usage.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
19
import paddle
20 21 22
import paddle.fluid.core as core
from paddle.fluid.dygraph.nn import Embedding
import paddle.fluid.framework as framework
23
from paddle.fluid.framework import _test_eager_guard
24 25 26 27 28 29 30 31
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope
import numpy as np
import six


class RecurrentTest(fluid.Layer):
32

33 34 35 36 37 38 39 40 41 42
    def __init__(self, name_scope):
        super(RecurrentTest, self).__init__(name_scope)

    def forward(self, in1, in2):
        out = fluid.layers.mul(in1, in2)
        sum_out = fluid.layers.reduce_sum(out)
        return sum_out, out


class TestRecurrentFeed(unittest.TestCase):
43

44 45 46 47 48 49
    def test_recurrent_feed(self):

        seed = 90
        original_np1 = np.arange(1, 5).reshape(2, 2).astype("float32")
        original_np2 = np.arange(5, 9).reshape(2, 2).astype("float32")
        with fluid.dygraph.guard():
50
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
51 52 53 54
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            original_in1 = to_variable(original_np1)
            original_in2 = to_variable(original_np2)
55 56
            original_in1.stop_gradient = False
            original_in2.stop_gradient = False
57 58 59 60 61 62 63
            rt = RecurrentTest("RecurrentTest")

            for i in range(3):
                sum_out, out = rt(original_in1, original_in2)
                original_in1 = out
                sum_out_value = sum_out.numpy()
                sum_out.backward()
64
                dyout = out.gradient()
65
                original_in1.stop_gradient = True
66
                rt.clear_gradients()
67
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
68

69
        with fluid.dygraph.guard():
70
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            with _test_eager_guard():
                fluid.default_startup_program().random_seed = seed
                fluid.default_main_program().random_seed = seed
                original_in1 = to_variable(original_np1)
                original_in2 = to_variable(original_np2)
                original_in1.stop_gradient = False
                original_in2.stop_gradient = False
                rt = RecurrentTest("RecurrentTest")

                for i in range(3):
                    sum_out, out = rt(original_in1, original_in2)
                    original_in1 = out
                    eager_sum_out_value = sum_out.numpy()
                    sum_out.backward()
                    eager_dyout = out.gradient()
                    original_in1.stop_gradient = True
                    rt.clear_gradients()
88
            fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
89

90 91 92
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
93 94 95 96 97 98
            in1 = fluid.layers.data(name="inp1",
                                    shape=[2, 2],
                                    append_batch_size=False)
            in2 = fluid.layers.data(name="inp2",
                                    shape=[2, 2],
                                    append_batch_size=False)
99 100 101 102 103 104
            rt1 = RecurrentTest("RecurrentTest")
            static_sum_out, static_out = rt1(in1, in2)
            fluid.backward.append_backward(static_sum_out)
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

105 106 107
            static_dout = fluid.default_main_program().block(
                0)._find_var_recursive(static_out.name + "@GRAD")
            fetch_list = [static_sum_out, static_out, static_dout]
108
            for i in range(3):
109 110 111 112 113 114
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "inp1": original_np1,
                                  "inp2": original_np2
                              },
                              fetch_list=fetch_list)
115 116
                static_out_value = out[1]
                static_sum_out = out[0]
117
                static_dout = out[2]
118 119 120
                original_np1 = static_out_value

        self.assertTrue(np.array_equal(static_sum_out, sum_out_value))
121
        self.assertTrue(np.array_equal(static_sum_out, eager_sum_out_value))
122
        self.assertTrue(np.array_equal(static_dout, dyout))
123
        self.assertTrue(np.array_equal(static_dout, eager_dyout))
124 125 126


if __name__ == '__main__':
127
    paddle.enable_static()
128
    unittest.main()