test_imperative_mnist.py 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
22
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
23
from test_imperative_base import new_program_scope
24
from utils import DyGraphProgramDescTracerTestHelper
J
Jiabin Yang 已提交
25
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
26 27


M
minqiyang 已提交
28
class SimpleImgConvPool(fluid.dygraph.Layer):
29

M
minqiyang 已提交
30
    def __init__(self,
31
                 num_channels,
M
minqiyang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
47
        super(SimpleImgConvPool, self).__init__()
M
minqiyang 已提交
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
        self._conv2d = Conv2D(num_channels=num_channels,
                              num_filters=num_filters,
                              filter_size=filter_size,
                              stride=conv_stride,
                              padding=conv_padding,
                              dilation=conv_dilation,
                              groups=conv_groups,
                              param_attr=None,
                              bias_attr=None,
                              use_cudnn=use_cudnn)

        self._pool2d = Pool2D(pool_size=pool_size,
                              pool_type=pool_type,
                              pool_stride=pool_stride,
                              pool_padding=pool_padding,
                              global_pooling=global_pooling,
                              use_cudnn=use_cudnn)
66

M
minqiyang 已提交
67
    def forward(self, inputs):
M
minqiyang 已提交
68 69 70
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
71 72


M
minqiyang 已提交
73
class MNIST(fluid.dygraph.Layer):
74

75 76
    def __init__(self):
        super(MNIST, self).__init__()
77

78 79 80 81 82 83
        self._simple_img_conv_pool_1 = SimpleImgConvPool(1,
                                                         20,
                                                         5,
                                                         2,
                                                         2,
                                                         act="relu")
84

85 86 87 88 89 90
        self._simple_img_conv_pool_2 = SimpleImgConvPool(20,
                                                         50,
                                                         5,
                                                         2,
                                                         2,
                                                         act="relu")
M
minqiyang 已提交
91

92
        self.pool_2_shape = 50 * 4 * 4
M
minqiyang 已提交
93
        SIZE = 10
94
        scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5
95 96 97 98 99 100
        self._fc = Linear(self.pool_2_shape,
                          10,
                          param_attr=fluid.param_attr.ParamAttr(
                              initializer=fluid.initializer.NormalInitializer(
                                  loc=0.0, scale=scale)),
                          act="softmax")
M
minqiyang 已提交
101 102 103 104

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
105
        x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
M
minqiyang 已提交
106 107 108 109 110
        x = self._fc(x)
        return x


class TestImperativeMnist(unittest.TestCase):
111

112
    def reader_decorator(self, reader):
113

114 115 116 117 118 119 120 121
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

122
    def func_test_mnist_float32(self):
123
        seed = 90
M
minqiyang 已提交
124
        epoch_num = 1
125 126 127
        batch_size = 128
        batch_num = 50

128 129
        traced_layer = None

M
minqiyang 已提交
130
        with fluid.dygraph.guard():
131 132 133
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

134
            mnist = MNIST()
135 136
            sgd = SGDOptimizer(learning_rate=1e-3,
                               parameter_list=mnist.parameters())
137 138 139

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
140 141 142 143
                paddle.batch(self.reader_decorator(
                    paddle.dataset.mnist.train()),
                             batch_size=batch_size,
                             drop_last=True),
144
                places=fluid.CPUPlace())
145

M
minqiyang 已提交
146
            mnist.train()
147
            dy_param_init_value = {}
148

149 150
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
M
minqiyang 已提交
151
            for epoch in range(epoch_num):
152 153 154 155 156 157
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
158
                    label.stop_gradient = True
M
minqiyang 已提交
159

J
Jiabin Yang 已提交
160
                    if batch_id % 10 == 0 and _in_legacy_dygraph():
161
                        cost, traced_layer = paddle.jit.TracedLayer.trace(
162 163 164 165 166 167
                            mnist, inputs=img)
                        if program is not None:
                            self.assertTrue(program, traced_layer.program)
                        program = traced_layer.program
                        traced_layer.save_inference_model(
                            './infer_imperative_mnist')
168 169 170
                    else:
                        cost = mnist(img)

171 172 173 174
                    if traced_layer is not None:
                        cost_static = traced_layer([img])
                        helper.assertEachVar(cost, cost_static)

M
minqiyang 已提交
175
                    loss = fluid.layers.cross_entropy(cost, label)
176
                    avg_loss = paddle.mean(loss)
M
minqiyang 已提交
177

L
lujun 已提交
178
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
179 180 181

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
182
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
183

L
lujun 已提交
184
                    avg_loss.backward()
M
minqiyang 已提交
185 186 187 188 189
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
190
                        dy_param_value[param.name] = param.numpy()
191 192 193 194 195 196 197 198

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

199
            mnist = MNIST()
M
minqiyang 已提交
200
            sgd = SGDOptimizer(learning_rate=1e-3)
201 202 203
            train_reader = paddle.batch(paddle.dataset.mnist.train(),
                                        batch_size=batch_size,
                                        drop_last=True)
204

205 206 207
            img = fluid.layers.data(name='pixel',
                                    shape=[1, 28, 28],
                                    dtype='float32')
208 209
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
210
            loss = fluid.layers.cross_entropy(cost, label)
211
            avg_loss = paddle.mean(loss)
M
minqiyang 已提交
212
            sgd.minimize(avg_loss)
213 214 215 216

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
217
            for param in mnist.parameters():
218 219 220 221 222 223 224 225
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
226 227
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
228 229
                    if batch_id >= batch_num:
                        break
230 231 232 233 234 235
                    static_x_data = np.array([
                        x[0].reshape(1, 28, 28) for x in data
                    ]).astype('float32')
                    y_data = np.array([x[1]
                                       for x in data]).astype('int64').reshape(
                                           [batch_size, 1])
M
minqiyang 已提交
236 237 238

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
239 240 241 242

                    if traced_layer is not None:
                        traced_layer([static_x_data])

243 244 245 246 247 248
                    out = exe.run(fluid.default_main_program(),
                                  feed={
                                      "pixel": static_x_data,
                                      "label": y_data
                                  },
                                  fetch_list=fetch_list)
M
minqiyang 已提交
249 250 251 252

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
253 254
                        static_param_value[static_param_name_list[i -
                                                                  1]] = out[i]
M
minqiyang 已提交
255

256 257 258
        np.testing.assert_allclose(dy_x_data.all(),
                                   static_x_data.all(),
                                   rtol=1e-05)
259

260
        for key, value in static_param_init_value.items():
261 262 263
            np.testing.assert_allclose(value,
                                       dy_param_init_value[key],
                                       rtol=1e-05)
M
minqiyang 已提交
264

265
        np.testing.assert_allclose(static_out, dy_out, rtol=1e-05)
M
minqiyang 已提交
266

267
        for key, value in static_param_value.items():
268 269 270 271
            np.testing.assert_allclose(value,
                                       dy_param_value[key],
                                       rtol=1e-05,
                                       atol=1e-05)
272

273 274 275 276 277
    def test_mnist_float32(self):
        with _test_eager_guard():
            self.func_test_mnist_float32()
        self.func_test_mnist_float32()

278 279

if __name__ == '__main__':
H
hong 已提交
280
    paddle.enable_static()
281
    unittest.main()