test_imperative_mnist.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25
import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
26
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
M
minqiyang 已提交
27
from paddle.fluid.dygraph.base import to_variable
28
from test_imperative_base import new_program_scope
29
from utils import DyGraphProgramDescTracerTestHelper, is_equal_program
J
Jiabin Yang 已提交
30
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
31 32


M
minqiyang 已提交
33
class SimpleImgConvPool(fluid.dygraph.Layer):
34

M
minqiyang 已提交
35
    def __init__(self,
36
                 num_channels,
M
minqiyang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
52
        super(SimpleImgConvPool, self).__init__()
M
minqiyang 已提交
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
        self._conv2d = Conv2D(num_channels=num_channels,
                              num_filters=num_filters,
                              filter_size=filter_size,
                              stride=conv_stride,
                              padding=conv_padding,
                              dilation=conv_dilation,
                              groups=conv_groups,
                              param_attr=None,
                              bias_attr=None,
                              use_cudnn=use_cudnn)

        self._pool2d = Pool2D(pool_size=pool_size,
                              pool_type=pool_type,
                              pool_stride=pool_stride,
                              pool_padding=pool_padding,
                              global_pooling=global_pooling,
                              use_cudnn=use_cudnn)
71

M
minqiyang 已提交
72
    def forward(self, inputs):
M
minqiyang 已提交
73 74 75
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
76 77


M
minqiyang 已提交
78
class MNIST(fluid.dygraph.Layer):
79

80 81
    def __init__(self):
        super(MNIST, self).__init__()
82

83 84 85 86 87 88
        self._simple_img_conv_pool_1 = SimpleImgConvPool(1,
                                                         20,
                                                         5,
                                                         2,
                                                         2,
                                                         act="relu")
89

90 91 92 93 94 95
        self._simple_img_conv_pool_2 = SimpleImgConvPool(20,
                                                         50,
                                                         5,
                                                         2,
                                                         2,
                                                         act="relu")
M
minqiyang 已提交
96

97
        self.pool_2_shape = 50 * 4 * 4
M
minqiyang 已提交
98
        SIZE = 10
99
        scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5
100 101 102 103 104 105
        self._fc = Linear(self.pool_2_shape,
                          10,
                          param_attr=fluid.param_attr.ParamAttr(
                              initializer=fluid.initializer.NormalInitializer(
                                  loc=0.0, scale=scale)),
                          act="softmax")
M
minqiyang 已提交
106 107 108 109

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
110
        x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
M
minqiyang 已提交
111 112 113 114 115
        x = self._fc(x)
        return x


class TestImperativeMnist(unittest.TestCase):
116

117
    def reader_decorator(self, reader):
118

119 120 121 122 123 124 125 126
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

127
    def func_test_mnist_float32(self):
128
        seed = 90
M
minqiyang 已提交
129
        epoch_num = 1
130 131 132
        batch_size = 128
        batch_num = 50

133 134
        traced_layer = None

M
minqiyang 已提交
135
        with fluid.dygraph.guard():
136 137 138
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

139
            mnist = MNIST()
140 141
            sgd = SGDOptimizer(learning_rate=1e-3,
                               parameter_list=mnist.parameters())
142 143 144

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
145 146 147 148
                paddle.batch(self.reader_decorator(
                    paddle.dataset.mnist.train()),
                             batch_size=batch_size,
                             drop_last=True),
149
                places=fluid.CPUPlace())
150

M
minqiyang 已提交
151
            mnist.train()
152
            dy_param_init_value = {}
153

154 155
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
M
minqiyang 已提交
156
            for epoch in range(epoch_num):
157 158 159 160 161 162
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
163
                    label.stop_gradient = True
M
minqiyang 已提交
164

J
Jiabin Yang 已提交
165
                    if batch_id % 10 == 0 and _in_legacy_dygraph():
166
                        cost, traced_layer = paddle.jit.TracedLayer.trace(
167 168 169 170 171 172
                            mnist, inputs=img)
                        if program is not None:
                            self.assertTrue(program, traced_layer.program)
                        program = traced_layer.program
                        traced_layer.save_inference_model(
                            './infer_imperative_mnist')
173 174 175
                    else:
                        cost = mnist(img)

176 177 178 179
                    if traced_layer is not None:
                        cost_static = traced_layer([img])
                        helper.assertEachVar(cost, cost_static)

M
minqiyang 已提交
180 181 182
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)

L
lujun 已提交
183
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
184 185 186

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
187
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
188

L
lujun 已提交
189
                    avg_loss.backward()
M
minqiyang 已提交
190 191 192 193 194
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
195
                        dy_param_value[param.name] = param.numpy()
196 197 198 199 200 201 202 203

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

204
            mnist = MNIST()
M
minqiyang 已提交
205
            sgd = SGDOptimizer(learning_rate=1e-3)
206 207 208
            train_reader = paddle.batch(paddle.dataset.mnist.train(),
                                        batch_size=batch_size,
                                        drop_last=True)
209

210 211 212
            img = fluid.layers.data(name='pixel',
                                    shape=[1, 28, 28],
                                    dtype='float32')
213 214
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
215 216 217
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
            sgd.minimize(avg_loss)
218 219 220 221

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
222
            for param in mnist.parameters():
223 224 225 226 227 228 229 230
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
231 232
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
233 234
                    if batch_id >= batch_num:
                        break
235 236 237 238 239 240
                    static_x_data = np.array([
                        x[0].reshape(1, 28, 28) for x in data
                    ]).astype('float32')
                    y_data = np.array([x[1]
                                       for x in data]).astype('int64').reshape(
                                           [batch_size, 1])
M
minqiyang 已提交
241 242 243

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
244 245 246 247

                    if traced_layer is not None:
                        traced_layer([static_x_data])

248 249 250 251 252 253
                    out = exe.run(fluid.default_main_program(),
                                  feed={
                                      "pixel": static_x_data,
                                      "label": y_data
                                  },
                                  fetch_list=fetch_list)
M
minqiyang 已提交
254 255 256 257

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
258 259
                        static_param_value[static_param_name_list[i -
                                                                  1]] = out[i]
M
minqiyang 已提交
260 261

        self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
262 263

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
264 265 266 267
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

268
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
269
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
270

271 272 273 274 275
    def test_mnist_float32(self):
        with _test_eager_guard():
            self.func_test_mnist_float32()
        self.func_test_mnist_float32()

276 277

if __name__ == '__main__':
H
hong 已提交
278
    paddle.enable_static()
279
    unittest.main()