test_dist_op.py 5.7 KB
Newer Older
Z
Zhang Ting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core

P
pangyoki 已提交
22 23
paddle.enable_static()

Z
Zhang Ting 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

def dist(x, y, p):
    if p == 0.:
        out = np.count_nonzero(x - y)
    elif p == float("inf"):
        out = np.max(np.abs(x - y))
    elif p == float("-inf"):
        out = np.min(np.abs(x - y))
    else:
        out = np.power(np.sum(np.power(np.abs(x - y), p)), 1.0 / p)
    return np.array(out).astype(x.dtype)


class TestDistOp(OpTest):
38

Z
Zhang Ting 已提交
39 40
    def setUp(self):
        self.op_type = 'dist'
H
hong 已提交
41
        self.python_api = paddle.dist
Z
Zhang Ting 已提交
42 43
        self.attrs = {}
        self.init_case()
44
        self.init_data_type()
Z
Zhang Ting 已提交
45
        self.inputs = {
46 47
            "X": np.random.random(self.x_shape).astype(self.data_type),
            "Y": np.random.random(self.y_shape).astype(self.data_type)
Z
Zhang Ting 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60
        }

        self.attrs["p"] = self.p
        self.outputs = {
            "Out": dist(self.inputs["X"], self.inputs["Y"], self.attrs["p"])
        }
        self.gradient = self.calc_gradient()

    def init_case(self):
        self.x_shape = (120)
        self.y_shape = (120)
        self.p = 0.

61 62 63 64
    def init_data_type(self):
        self.data_type = np.float32 if core.is_compiled_with_rocm(
        ) else np.float64

Z
Zhang Ting 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    def calc_gradient(self):
        x = self.inputs["X"]
        y = self.inputs["Y"]
        p = self.attrs["p"]
        if p == 0:
            grad = np.zeros(x.shape)
        elif p in [float("inf"), float("-inf")]:
            norm = dist(x, y, p)
            x_minux_y_abs = np.abs(x - y)
            grad = np.sign(x - y)
            grad[x_minux_y_abs != norm] = 0
        else:
            norm = dist(x, y, p)
            grad = np.power(norm, 1 - p) * np.power(np.abs(x - y),
                                                    p - 1) * np.sign(x - y)

        def get_reduce_dims(x, y):
            x_reduce_dims = []
            y_reduce_dims = []

            if x.ndim >= y.ndim:
                y_reshape = tuple([1] * (x.ndim - y.ndim) + list(y.shape))
                y = y.reshape(y_reshape)
            else:
                x_reshape = tuple([1] * (y.ndim - x.ndim) + list(x.shape))
                x = x.reshape(x_reshape)
            for i in range(x.ndim):
                if x.shape[i] > y.shape[i]:
                    y_reduce_dims.append(i)
                elif x.shape[i] < y.shape[i]:
                    x_reduce_dims.append(i)
            return x_reduce_dims, y_reduce_dims

        x_reduce_dims, y_reduce_dims = get_reduce_dims(x, y)
        if len(x_reduce_dims) != 0:
            x_grad = np.sum(grad, tuple(x_reduce_dims)).reshape(x.shape)
        else:
            x_grad = grad
        if len(y_reduce_dims) != 0:
            y_grad = -np.sum(grad, tuple(y_reduce_dims)).reshape(y.shape)
        else:
            y_grad = -grad

        return x_grad, y_grad

    def test_check_output(self):
H
hong 已提交
111
        self.check_output(check_eager=True)
Z
Zhang Ting 已提交
112 113

    def test_check_grad(self):
114 115 116 117
        self.check_grad(["X", "Y"],
                        "Out",
                        user_defined_grads=self.gradient,
                        check_eager=True)
Z
Zhang Ting 已提交
118 119 120


class TestDistOpCase1(TestDistOp):
121

Z
Zhang Ting 已提交
122 123 124 125 126 127 128
    def init_case(self):
        self.x_shape = (3, 5, 5, 6)
        self.y_shape = (5, 5, 6)
        self.p = 1.


class TestDistOpCase2(TestDistOp):
129

Z
Zhang Ting 已提交
130 131 132 133 134 135 136
    def init_case(self):
        self.x_shape = (10, 10)
        self.y_shape = (4, 10, 10)
        self.p = 2.


class TestDistOpCase3(TestDistOp):
137

Z
Zhang Ting 已提交
138 139 140 141 142 143 144
    def init_case(self):
        self.x_shape = (15, 10)
        self.y_shape = (15, 10)
        self.p = float("inf")


class TestDistOpCase4(TestDistOp):
145

Z
Zhang Ting 已提交
146 147 148 149 150 151 152
    def init_case(self):
        self.x_shape = (2, 3, 4, 5, 8)
        self.y_shape = (3, 1, 5, 8)
        self.p = float("-inf")


class TestDistOpCase5(TestDistOp):
153

Z
Zhang Ting 已提交
154 155 156 157 158 159 160
    def init_case(self):
        self.x_shape = (4, 1, 4, 8)
        self.y_shape = (2, 2, 1, 4, 4, 8)
        self.p = 1.5


class TestDistAPI(unittest.TestCase):
161

162 163 164 165
    def init_data_type(self):
        self.data_type = 'float32' if core.is_compiled_with_rocm(
        ) else 'float64'

Z
Zhang Ting 已提交
166
    def test_api(self):
167
        self.init_data_type()
Z
Zhang Ting 已提交
168 169 170
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
171 172
            x = fluid.data(name='x', shape=[2, 3, 4, 5], dtype=self.data_type)
            y = fluid.data(name='y', shape=[3, 1, 5], dtype=self.data_type)
Z
Zhang Ting 已提交
173
            p = 2
174 175
            x_i = np.random.random((2, 3, 4, 5)).astype(self.data_type)
            y_i = np.random.random((3, 1, 5)).astype(self.data_type)
Z
Zhang Ting 已提交
176
            result = paddle.dist(x, y, p)
177 178
            place = fluid.CUDAPlace(
                0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
Z
Zhang Ting 已提交
179 180
            exe = fluid.Executor(place)
            out = exe.run(fluid.default_main_program(),
181 182 183 184
                          feed={
                              'x': x_i,
                              'y': y_i
                          },
Z
Zhang Ting 已提交
185
                          fetch_list=[result])
186
            np.testing.assert_allclose(dist(x_i, y_i, p), out[0], rtol=1e-05)
Z
Zhang Ting 已提交
187 188 189


if __name__ == '__main__':
H
hong 已提交
190
    paddle.enable_static()
Z
Zhang Ting 已提交
191
    unittest.main()