yolov3.py 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

15 16 17
import os
import sys

18 19
import paddle.fluid as fluid
from paddle.fluid.dygraph import declarative
20
from paddle.fluid.dygraph.nn import Conv2D
21 22 23 24 25 26 27 28
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

from darknet import DarkNet53_conv_body
from darknet import ConvBNLayer


class AttrDict(dict):
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)

    def __getattr__(self, name):
        if name in self.__dict__:
            return self.__dict__[name]
        elif name in self:
            return self[name]
        else:
            raise AttributeError(name)

    def __setattr__(self, name, value):
        if name in self.__dict__:
            self.__dict__[name] = value
        else:
            self[name] = value


#
# Training options
#
cfg = AttrDict()
# Snapshot period
cfg.snapshot_iter = 2000
# min valid area for gt boxes
cfg.gt_min_area = -1
# max target box number in an image
cfg.max_box_num = 50
# valid score threshold to include boxes
cfg.valid_thresh = 0.005
# threshold vale for box non-max suppression
cfg.nms_thresh = 0.45
# the number of top k boxes to perform nms
cfg.nms_topk = 400
# the number of output boxes after nms
cfg.nms_posk = 100
# score threshold for draw box in debug mode
cfg.draw_thresh = 0.5
# Use label smooth in class label
cfg.label_smooth = True
#
# Model options
#
# input size
74
cfg.input_size = 224 if sys.platform == 'darwin' else 608
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
# pixel mean values
cfg.pixel_means = [0.485, 0.456, 0.406]
# pixel std values
cfg.pixel_stds = [0.229, 0.224, 0.225]
# anchors box weight and height
cfg.anchors = [
    10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326
]
# anchor mask of each yolo layer
cfg.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
# IoU threshold to ignore objectness loss of pred box
cfg.ignore_thresh = .7
#
# SOLVER options
#
# batch size
91
cfg.batch_size = 1 if sys.platform == 'darwin' or os.name == 'nt' else 4
92 93 94
# derived learning rate the to get the final learning rate.
cfg.learning_rate = 0.001
# maximum number of iterations
95
cfg.max_iter = 20 if fluid.is_compiled_with_cuda() else 1
96 97
# Disable mixup in last N iter
cfg.no_mixup_iter = 10 if fluid.is_compiled_with_cuda() else 1
98
# warm up to learning rate
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
cfg.warm_up_iter = 10 if fluid.is_compiled_with_cuda() else 1
cfg.warm_up_factor = 0.
# lr steps_with_decay
cfg.lr_steps = [400000, 450000]
cfg.lr_gamma = 0.1
# L2 regularization hyperparameter
cfg.weight_decay = 0.0005
# momentum with SGD
cfg.momentum = 0.9
#
# ENV options
#
# support both CPU and GPU
cfg.use_gpu = fluid.is_compiled_with_cuda()
# Class number
cfg.class_num = 80


class YoloDetectionBlock(fluid.dygraph.Layer):
118

119 120 121 122 123 124
    def __init__(self, ch_in, channel, is_test=True):
        super(YoloDetectionBlock, self).__init__()

        assert channel % 2 == 0, \
            "channel {} cannot be divided by 2".format(channel)

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        self.conv0 = ConvBNLayer(ch_in=ch_in,
                                 ch_out=channel,
                                 filter_size=1,
                                 stride=1,
                                 padding=0,
                                 is_test=is_test)
        self.conv1 = ConvBNLayer(ch_in=channel,
                                 ch_out=channel * 2,
                                 filter_size=3,
                                 stride=1,
                                 padding=1,
                                 is_test=is_test)
        self.conv2 = ConvBNLayer(ch_in=channel * 2,
                                 ch_out=channel,
                                 filter_size=1,
                                 stride=1,
                                 padding=0,
                                 is_test=is_test)
        self.conv3 = ConvBNLayer(ch_in=channel,
                                 ch_out=channel * 2,
                                 filter_size=3,
                                 stride=1,
                                 padding=1,
                                 is_test=is_test)
        self.route = ConvBNLayer(ch_in=channel * 2,
                                 ch_out=channel,
                                 filter_size=1,
                                 stride=1,
                                 padding=0,
                                 is_test=is_test)
        self.tip = ConvBNLayer(ch_in=channel,
                               ch_out=channel * 2,
                               filter_size=3,
                               stride=1,
                               padding=1,
                               is_test=is_test)
161 162 163 164 165 166 167 168 169 170 171 172

    def forward(self, inputs):
        out = self.conv0(inputs)
        out = self.conv1(out)
        out = self.conv2(out)
        out = self.conv3(out)
        route = self.route(out)
        tip = self.tip(route)
        return route, tip


class Upsample(fluid.dygraph.Layer):
173

174 175 176 177 178 179 180
    def __init__(self, scale=2):
        super(Upsample, self).__init__()
        self.scale = scale

    def forward(self, inputs):
        # get dynamic upsample output shape
        shape_nchw = fluid.layers.shape(inputs)
181 182 183 184
        shape_hw = fluid.layers.slice(shape_nchw,
                                      axes=[0],
                                      starts=[2],
                                      ends=[4])
185 186 187 188 189 190
        shape_hw.stop_gradient = True
        in_shape = fluid.layers.cast(shape_hw, dtype='int32')
        out_shape = in_shape * self.scale
        out_shape.stop_gradient = True

        # reisze by actual_shape
191 192 193
        out = fluid.layers.resize_nearest(input=inputs,
                                          scale=self.scale,
                                          actual_shape=out_shape)
194 195 196 197
        return out


class YOLOv3(fluid.dygraph.Layer):
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212
    def __init__(self, ch_in, is_train=True, use_random=False):
        super(YOLOv3, self).__init__()

        self.is_train = is_train
        self.use_random = use_random

        self.block = DarkNet53_conv_body(ch_in=ch_in, is_test=not self.is_train)
        self.block_outputs = []
        self.yolo_blocks = []
        self.route_blocks_2 = []
        ch_in_list = [1024, 768, 384]
        for i in range(3):
            yolo_block = self.add_sublayer(
                "yolo_detecton_block_%d" % (i),
213 214 215
                YoloDetectionBlock(ch_in_list[i],
                                   channel=512 // (2**i),
                                   is_test=not self.is_train))
216 217 218 219 220 221
            self.yolo_blocks.append(yolo_block)

            num_filters = len(cfg.anchor_masks[i]) * (cfg.class_num + 5)

            block_out = self.add_sublayer(
                "block_out_%d" % (i),
222 223 224 225 226 227 228 229 230 231 232
                Conv2D(num_channels=1024 // (2**i),
                       num_filters=num_filters,
                       filter_size=1,
                       stride=1,
                       padding=0,
                       act=None,
                       param_attr=ParamAttr(
                           initializer=fluid.initializer.Normal(0., 0.02)),
                       bias_attr=ParamAttr(
                           initializer=fluid.initializer.Constant(0.0),
                           regularizer=L2Decay(0.))))
233 234 235 236
            self.block_outputs.append(block_out)
            if i < 2:
                route = self.add_sublayer(
                    "route2_%d" % i,
237 238 239 240 241 242
                    ConvBNLayer(ch_in=512 // (2**i),
                                ch_out=256 // (2**i),
                                filter_size=1,
                                stride=1,
                                padding=0,
                                is_test=(not self.is_train)))
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
                self.route_blocks_2.append(route)
            self.upsample = Upsample()

    @declarative
    def forward(self,
                inputs,
                gtbox=None,
                gtlabel=None,
                gtscore=None,
                im_id=None,
                im_shape=None):
        self.outputs = []
        self.boxes = []
        self.scores = []
        self.losses = []
        self.downsample = 32
        blocks = self.block(inputs)
        for i, block in enumerate(blocks):
            if i > 0:
                block = fluid.layers.concat(input=[route, block], axis=1)
            route, tip = self.yolo_blocks[i](block)
            block_out = self.block_outputs[i](tip)
            self.outputs.append(block_out)

            if i < 2:
                route = self.route_blocks_2[i](route)
                route = self.upsample(route)
        self.gtbox = gtbox
        self.gtlabel = gtlabel
        self.gtscore = gtscore
        self.im_id = im_id
        self.im_shape = im_shape

        # cal loss
        for i, out in enumerate(self.outputs):
            anchor_mask = cfg.anchor_masks[i]
            if self.is_train:
                loss = fluid.layers.yolov3_loss(
                    x=out,
                    gt_box=self.gtbox,
                    gt_label=self.gtlabel,
                    gt_score=self.gtscore,
                    anchors=cfg.anchors,
                    anchor_mask=anchor_mask,
                    class_num=cfg.class_num,
                    ignore_thresh=cfg.ignore_thresh,
                    downsample_ratio=self.downsample,
                    use_label_smooth=cfg.label_smooth)
                self.losses.append(fluid.layers.reduce_mean(loss))

            else:
                mask_anchors = []
                for m in anchor_mask:
                    mask_anchors.append(cfg.anchors[2 * m])
                    mask_anchors.append(cfg.anchors[2 * m + 1])
                boxes, scores = fluid.layers.yolo_box(
                    x=out,
                    img_size=self.im_shape,
                    anchors=mask_anchors,
                    class_num=cfg.class_num,
                    conf_thresh=cfg.valid_thresh,
                    downsample_ratio=self.downsample,
                    name="yolo_box" + str(i))
                self.boxes.append(boxes)
                self.scores.append(
308
                    fluid.layers.transpose(scores, perm=[0, 2, 1]))
309 310
            self.downsample //= 2

311 312 313 314 315
        if not self.is_train:
            # get pred
            yolo_boxes = fluid.layers.concat(self.boxes, axis=1)
            yolo_scores = fluid.layers.concat(self.scores, axis=2)

316 317 318 319 320 321 322
            pred = fluid.layers.multiclass_nms(bboxes=yolo_boxes,
                                               scores=yolo_scores,
                                               score_threshold=cfg.valid_thresh,
                                               nms_top_k=cfg.nms_topk,
                                               keep_top_k=cfg.nms_posk,
                                               nms_threshold=cfg.nms_thresh,
                                               background_label=-1)
323 324 325
            return pred
        else:
            return sum(self.losses)