yolov3.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

15 16 17
import os
import sys

18 19 20 21 22 23 24 25 26 27 28 29 30 31
import paddle.fluid as fluid
from paddle.fluid.dygraph import declarative
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.nn import Conv2D, BatchNorm
from paddle.fluid.initializer import Constant
from paddle.fluid.initializer import Normal
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

from darknet import DarkNet53_conv_body
from darknet import ConvBNLayer


class AttrDict(dict):
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)

    def __getattr__(self, name):
        if name in self.__dict__:
            return self.__dict__[name]
        elif name in self:
            return self[name]
        else:
            raise AttributeError(name)

    def __setattr__(self, name, value):
        if name in self.__dict__:
            self.__dict__[name] = value
        else:
            self[name] = value


#
# Training options
#
cfg = AttrDict()
# Snapshot period
cfg.snapshot_iter = 2000
# min valid area for gt boxes
cfg.gt_min_area = -1
# max target box number in an image
cfg.max_box_num = 50
# valid score threshold to include boxes
cfg.valid_thresh = 0.005
# threshold vale for box non-max suppression
cfg.nms_thresh = 0.45
# the number of top k boxes to perform nms
cfg.nms_topk = 400
# the number of output boxes after nms
cfg.nms_posk = 100
# score threshold for draw box in debug mode
cfg.draw_thresh = 0.5
# Use label smooth in class label
cfg.label_smooth = True
#
# Model options
#
# input size
77
cfg.input_size = 224 if sys.platform == 'darwin' else 608
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
# pixel mean values
cfg.pixel_means = [0.485, 0.456, 0.406]
# pixel std values
cfg.pixel_stds = [0.229, 0.224, 0.225]
# anchors box weight and height
cfg.anchors = [
    10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326
]
# anchor mask of each yolo layer
cfg.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
# IoU threshold to ignore objectness loss of pred box
cfg.ignore_thresh = .7
#
# SOLVER options
#
# batch size
94
cfg.batch_size = 1 if sys.platform == 'darwin' or os.name == 'nt' else 4
95 96 97
# derived learning rate the to get the final learning rate.
cfg.learning_rate = 0.001
# maximum number of iterations
98
cfg.max_iter = 20 if fluid.is_compiled_with_cuda() else 1
99 100
# Disable mixup in last N iter
cfg.no_mixup_iter = 10 if fluid.is_compiled_with_cuda() else 1
101
# warm up to learning rate
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
cfg.warm_up_iter = 10 if fluid.is_compiled_with_cuda() else 1
cfg.warm_up_factor = 0.
# lr steps_with_decay
cfg.lr_steps = [400000, 450000]
cfg.lr_gamma = 0.1
# L2 regularization hyperparameter
cfg.weight_decay = 0.0005
# momentum with SGD
cfg.momentum = 0.9
#
# ENV options
#
# support both CPU and GPU
cfg.use_gpu = fluid.is_compiled_with_cuda()
# Class number
cfg.class_num = 80


class YoloDetectionBlock(fluid.dygraph.Layer):
121

122 123 124 125 126 127
    def __init__(self, ch_in, channel, is_test=True):
        super(YoloDetectionBlock, self).__init__()

        assert channel % 2 == 0, \
            "channel {} cannot be divided by 2".format(channel)

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        self.conv0 = ConvBNLayer(ch_in=ch_in,
                                 ch_out=channel,
                                 filter_size=1,
                                 stride=1,
                                 padding=0,
                                 is_test=is_test)
        self.conv1 = ConvBNLayer(ch_in=channel,
                                 ch_out=channel * 2,
                                 filter_size=3,
                                 stride=1,
                                 padding=1,
                                 is_test=is_test)
        self.conv2 = ConvBNLayer(ch_in=channel * 2,
                                 ch_out=channel,
                                 filter_size=1,
                                 stride=1,
                                 padding=0,
                                 is_test=is_test)
        self.conv3 = ConvBNLayer(ch_in=channel,
                                 ch_out=channel * 2,
                                 filter_size=3,
                                 stride=1,
                                 padding=1,
                                 is_test=is_test)
        self.route = ConvBNLayer(ch_in=channel * 2,
                                 ch_out=channel,
                                 filter_size=1,
                                 stride=1,
                                 padding=0,
                                 is_test=is_test)
        self.tip = ConvBNLayer(ch_in=channel,
                               ch_out=channel * 2,
                               filter_size=3,
                               stride=1,
                               padding=1,
                               is_test=is_test)
164 165 166 167 168 169 170 171 172 173 174 175

    def forward(self, inputs):
        out = self.conv0(inputs)
        out = self.conv1(out)
        out = self.conv2(out)
        out = self.conv3(out)
        route = self.route(out)
        tip = self.tip(route)
        return route, tip


class Upsample(fluid.dygraph.Layer):
176

177 178 179 180 181 182 183
    def __init__(self, scale=2):
        super(Upsample, self).__init__()
        self.scale = scale

    def forward(self, inputs):
        # get dynamic upsample output shape
        shape_nchw = fluid.layers.shape(inputs)
184 185 186 187
        shape_hw = fluid.layers.slice(shape_nchw,
                                      axes=[0],
                                      starts=[2],
                                      ends=[4])
188 189 190 191 192 193
        shape_hw.stop_gradient = True
        in_shape = fluid.layers.cast(shape_hw, dtype='int32')
        out_shape = in_shape * self.scale
        out_shape.stop_gradient = True

        # reisze by actual_shape
194 195 196
        out = fluid.layers.resize_nearest(input=inputs,
                                          scale=self.scale,
                                          actual_shape=out_shape)
197 198 199 200
        return out


class YOLOv3(fluid.dygraph.Layer):
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215
    def __init__(self, ch_in, is_train=True, use_random=False):
        super(YOLOv3, self).__init__()

        self.is_train = is_train
        self.use_random = use_random

        self.block = DarkNet53_conv_body(ch_in=ch_in, is_test=not self.is_train)
        self.block_outputs = []
        self.yolo_blocks = []
        self.route_blocks_2 = []
        ch_in_list = [1024, 768, 384]
        for i in range(3):
            yolo_block = self.add_sublayer(
                "yolo_detecton_block_%d" % (i),
216 217 218
                YoloDetectionBlock(ch_in_list[i],
                                   channel=512 // (2**i),
                                   is_test=not self.is_train))
219 220 221 222 223 224
            self.yolo_blocks.append(yolo_block)

            num_filters = len(cfg.anchor_masks[i]) * (cfg.class_num + 5)

            block_out = self.add_sublayer(
                "block_out_%d" % (i),
225 226 227 228 229 230 231 232 233 234 235
                Conv2D(num_channels=1024 // (2**i),
                       num_filters=num_filters,
                       filter_size=1,
                       stride=1,
                       padding=0,
                       act=None,
                       param_attr=ParamAttr(
                           initializer=fluid.initializer.Normal(0., 0.02)),
                       bias_attr=ParamAttr(
                           initializer=fluid.initializer.Constant(0.0),
                           regularizer=L2Decay(0.))))
236 237 238 239
            self.block_outputs.append(block_out)
            if i < 2:
                route = self.add_sublayer(
                    "route2_%d" % i,
240 241 242 243 244 245
                    ConvBNLayer(ch_in=512 // (2**i),
                                ch_out=256 // (2**i),
                                filter_size=1,
                                stride=1,
                                padding=0,
                                is_test=(not self.is_train)))
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
                self.route_blocks_2.append(route)
            self.upsample = Upsample()

    @declarative
    def forward(self,
                inputs,
                gtbox=None,
                gtlabel=None,
                gtscore=None,
                im_id=None,
                im_shape=None):
        self.outputs = []
        self.boxes = []
        self.scores = []
        self.losses = []
        self.downsample = 32
        blocks = self.block(inputs)
        for i, block in enumerate(blocks):
            if i > 0:
                block = fluid.layers.concat(input=[route, block], axis=1)
            route, tip = self.yolo_blocks[i](block)
            block_out = self.block_outputs[i](tip)
            self.outputs.append(block_out)

            if i < 2:
                route = self.route_blocks_2[i](route)
                route = self.upsample(route)
        self.gtbox = gtbox
        self.gtlabel = gtlabel
        self.gtscore = gtscore
        self.im_id = im_id
        self.im_shape = im_shape

        # cal loss
        for i, out in enumerate(self.outputs):
            anchor_mask = cfg.anchor_masks[i]
            if self.is_train:
                loss = fluid.layers.yolov3_loss(
                    x=out,
                    gt_box=self.gtbox,
                    gt_label=self.gtlabel,
                    gt_score=self.gtscore,
                    anchors=cfg.anchors,
                    anchor_mask=anchor_mask,
                    class_num=cfg.class_num,
                    ignore_thresh=cfg.ignore_thresh,
                    downsample_ratio=self.downsample,
                    use_label_smooth=cfg.label_smooth)
                self.losses.append(fluid.layers.reduce_mean(loss))

            else:
                mask_anchors = []
                for m in anchor_mask:
                    mask_anchors.append(cfg.anchors[2 * m])
                    mask_anchors.append(cfg.anchors[2 * m + 1])
                boxes, scores = fluid.layers.yolo_box(
                    x=out,
                    img_size=self.im_shape,
                    anchors=mask_anchors,
                    class_num=cfg.class_num,
                    conf_thresh=cfg.valid_thresh,
                    downsample_ratio=self.downsample,
                    name="yolo_box" + str(i))
                self.boxes.append(boxes)
                self.scores.append(
311
                    fluid.layers.transpose(scores, perm=[0, 2, 1]))
312 313
            self.downsample //= 2

314 315 316 317 318
        if not self.is_train:
            # get pred
            yolo_boxes = fluid.layers.concat(self.boxes, axis=1)
            yolo_scores = fluid.layers.concat(self.scores, axis=2)

319 320 321 322 323 324 325
            pred = fluid.layers.multiclass_nms(bboxes=yolo_boxes,
                                               scores=yolo_scores,
                                               score_threshold=cfg.valid_thresh,
                                               nms_top_k=cfg.nms_topk,
                                               keep_top_k=cfg.nms_posk,
                                               nms_threshold=cfg.nms_thresh,
                                               background_label=-1)
326 327 328
            return pred
        else:
            return sum(self.losses)