auto_parallel_sharding.py 33.5 KB
Newer Older
J
JZ-LIANG 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
J
JZ-LIANG 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
J
JZ-LIANG 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
J
JZ-LIANG 已提交
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import reduce

from paddle.framework import core
from paddle.fluid import unique_name
from .pass_base import PassBase, register_pass
from paddle.distributed.fleet.meta_optimizers.common import is_backward_op, is_optimizer_op
J
JZ-LIANG 已提交
21
from paddle.distributed.auto_parallel.process_group import new_process_group
22
from paddle.distributed.auto_parallel.operators.common import is_parameter_related, is_data_parallel_reduce_op
J
JZ-LIANG 已提交
23 24 25 26
from paddle.distributed.auto_parallel.utils import _get_comm_group, naive_set_dist_op_attr_for_program_by_mesh_and_mapping, set_var_dist_attr

OpRole = core.op_proto_and_checker_maker.OpRole
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
27 28 29 30
_skip_ops = [
    'create_py_reader', 'create_double_buffer_reader', 'read', 'slice', 'split',
    'assign', "send_v2"
]
J
JZ-LIANG 已提交
31 32 33 34 35 36 37
# update here to support new optimizers
_supported_optimizer_type = [
    "adam", "adamax", "adamw", "decayed_adagrad", "momentum", "dgc_momentum",
    "lars_momentum", "merged_momentum", "lamb", "sgd"
]


38 39 40 41 42
def _is_reshard_op(op):
    return op.desc.has_attr("op_namescope") and \
        "/auto_parallel/reshard" in op.desc.attr('op_namescope')


J
JZ-LIANG 已提交
43 44 45
# NOTE we add the "auto_parallel" prefix to the pass in order to
# indicate that this pass should obey some constrains by auto_parallel
# for example all ops and vars should has dist attr before and after pass
46
# should use dist op instead of custom comm op
J
JZ-LIANG 已提交
47 48
@register_pass("auto_parallel_sharding")
class ShardingPass(PassBase):
49

J
JZ-LIANG 已提交
50 51 52 53
    def __init__(self):
        super(ShardingPass, self).__init__()
        self.set_attr("dist_context", None)
        self.set_attr("stage", None)
Z
zhaoyingli 已提交
54 55
        self.set_attr("sharding_degree", None)  # for parallelizer
        self.set_attr("degree", None)  # for parallelizer_v2
J
JZ-LIANG 已提交
56 57 58 59 60 61 62
        self.set_attr("params_grads", [])
        self.set_attr("global_rank", -1)
        self.dp_groups = set()
        self.sharding_infos = []
        self.varname_to_sharding_info = {}
        self.partial_sharding = False
        self.outer_dp_group = None
63
        self.shared_params_grads = []
J
JZ-LIANG 已提交
64 65 66 67 68 69 70

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False

        if self.get_attr("stage") not in [1, 2, 3]:
            return False
Z
zhaoyingli 已提交
71 72 73 74 75 76 77 78 79
        if self.get_attr("sharding_degree") is not None:
            if (not isinstance(self.get_attr("sharding_degree"), int)) \
                or self.get_attr("sharding_degree") <= 1:
                return False
        elif self.get_attr("degree") is not None:
            if (not isinstance(self.get_attr("degree"), int)) \
                or self.get_attr("degree") <= 1:
                return False
        else:
J
JZ-LIANG 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93
            return False
        if len(self.get_attr("params_grads")) <= 0:
            return False
        if (not isinstance(self.get_attr("global_rank"),
                           int)) or self.get_attr("global_rank") < 0:
            return False

        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, context):
        self._dist_context = self.get_attr("dist_context")
Z
zhaoyingli 已提交
94 95
        self.sharding_world_size = int(
            self.get_attr("sharding_degree") or self.get_attr("degree"))
J
JZ-LIANG 已提交
96 97 98 99 100 101 102 103 104 105 106
        self.stage = int(self.get_attr("stage"))
        self.global_rank = int(self.get_attr("global_rank"))
        params_grads = self.get_attr("params_grads")
        main_block, startup_block = main_program.global_block(
        ), startup_program.global_block()

        self._build_sharding_groups(main_block, params_grads)
        self._shard_optimizer(main_block, startup_block, params_grads, context)
        self._shard_gradient_synchronization(main_block)
        self._shard_parameter(main_block, startup_block)

107 108
        context.set_attr("params_grads", self.shared_params_grads)

J
JZ-LIANG 已提交
109 110 111 112 113 114
    def _build_sharding_groups(self, main_block, params_grads):
        self._collective_data_parallel_groups(main_block)
        self._build_sharding_infos(params_grads)

    def _collective_data_parallel_groups(self, main_block):
        for op in main_block.ops:
J
JZ-LIANG 已提交
115
            if not _is_forward_op(op) or op.type in _skip_ops:
J
JZ-LIANG 已提交
116
                continue
117 118 119 120
            # NOTE: there aren't dist_attr in the ops which reshard insert,
            # and should be skip in sharding.
            if _is_reshard_op(op):
                continue
J
JZ-LIANG 已提交
121 122 123 124 125
            group = _inference_data_parallel_group_for_operator(
                self.global_rank, op, self._dist_context)
            if group is not None:
                self.dp_groups.add(group)

126
        # TODO(JZ-LIANG) allow more than one dp groups in network, support more general distribution
J
JZ-LIANG 已提交
127 128 129
        # genetated by auto search
        if len(self.dp_groups) != 1:
            raise NotImplementedError(
130 131
                "So far Only and Exactly one data parallel group in network are supported, but got [{}] different data parallel groups"
                .format(len(self.dp_groups)))
J
JZ-LIANG 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    def _build_sharding_infos(self, params_grads):

        for dp_group in self.dp_groups:

            assert dp_group.nranks >= self.sharding_world_size, "sharding world size [{}] should not larger than dp world size [{}]".format(
                self.sharding_world_size, dp_group.nranks)
            assert dp_group.nranks % self.sharding_world_size == 0, "sharding world size [{}] should be divisible by dp world size [{}]".format(
                self.sharding_world_size, dp_group.nranks)
            assert self.global_rank in dp_group.ranks, "current ranks [{}] does NOT belong to the data parallel group [{}]".format(
                self.global_rank, dp_group.ranks)
            assert len(
                params_grads
            ) >= self.sharding_world_size, "number of parameters [{}] is not enough to be shard among [{}] ranks".format(
                len(params_grads), self.sharding_world_size)

148
            # sharding hybrid data parallel: partial sharding param within
J
JZ-LIANG 已提交
149 150 151 152 153 154 155 156 157 158 159 160
            if dp_group.nranks > self.sharding_world_size:
                self.partial_sharding = True
                assert len(
                    self.dp_groups
                ) == 1, "hybrid sharding and data parallelism are supported only when there is excatly one data parallel group in the network"
                outer_dp_group, sharding_group = _get_dp_and_sharding_groups(
                    dp_group.ranks, self.sharding_world_size, self.global_rank)
                sharding_group = new_process_group(sharding_group)
                self.outer_dp_group = new_process_group(outer_dp_group)
            else:
                sharding_group = dp_group

161
            self._dist_context._sharding_group = sharding_group
J
JZ-LIANG 已提交
162 163
            # TODO(JZ-LIANG) when support multiple dp groups in future, should group param and bind them to corresponding dp group
            sharding_info = ShardingInfo(sharding_group, self.global_rank,
164
                                         params_grads)
J
JZ-LIANG 已提交
165
            self.sharding_infos.append(sharding_info)
166
            for param in sharding_info.params:
J
JZ-LIANG 已提交
167 168 169 170 171 172 173 174 175 176 177 178
                self.varname_to_sharding_info[param.name] = sharding_info

    def _shard_optimizer(self, main_block, startup_block, params_grads,
                         pass_context):
        """
        sharding all optimizer related ops and vars, include:
        gradient clip ops & vars
        weight decay ops & vars
        optimizer ops and states
        """
        self._shard_amp_related_op_and_vars(main_block, pass_context)
        self._shard_weight_decay(main_block)
179
        # self._shard_gradient_clip(main_block)
J
JZ-LIANG 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        self._shard_optimizer_ops_and_states(main_block, startup_block)
        self._insert_optimizer_broadcasts(main_block, startup_block)

    def _shard_amp_related_op_and_vars(self, main_block, pass_context):

        if self.stage < 2:
            return

        for idx, op in reversed(list(enumerate(main_block.ops))):
            # shard amp related param_grad cast
            if _is_param_grad_fp32_cast_op(main_block, op):
                output_name = op.output_arg_names[0]
                param_name = output_name[:output_name.find("@")]
                if not self._is_parameter_in_local_shard(param_name):
                    main_block._remove_op(idx, sync=False)
                    main_block._remove_var(output_name, sync=False)

            # shard check nan inf
            elif op.type in ["check_finite_and_unscale", "update_loss_scaling"]:
                reversed_x = []
                for input_name in op.desc.input('X'):
                    param_name = input_name[:input_name.find("@")]

                    if self._is_parameter_in_local_shard(param_name):
                        reversed_x.append(input_name)
205 206 207 208 209 210 211 212

                # NOTE: When `reversed_x` is [], check_finite_and_unscale will be replaced by `fill_constant` op.
                # The output of check_finite_and_unscale is be set False
                if reversed_x:
                    op.desc.set_input('X', reversed_x)
                    op.desc.set_output('Out', reversed_x)
                else:
                    if op.type == "check_finite_and_unscale":
213
                        op_role = op.attr('op_role')
214 215 216 217 218 219 220 221 222 223 224
                        out_name = op.output_arg_names[0]
                        out_var = main_block.vars[out_name]
                        main_block._remove_op(idx, sync=False)
                        main_block._insert_op_without_sync(
                            idx,
                            type="fill_constant",
                            outputs={"Out": out_var},
                            attrs={
                                "shape": out_var.shape,
                                "dtype": out_var.dtype,
                                "value": 0,
225
                                OP_ROLE_KEY: op_role,
226 227 228
                            })
                    else:
                        main_block._remove_op(idx, sync=False)
J
JZ-LIANG 已提交
229 230 231 232 233 234 235 236 237

        main_block._sync_with_cpp()

    def _shard_gradient_clip(self, main_block):

        if self.stage < 2:
            return

        # TODO (JZ-LIANG) support calculate global norm with tensor parallelism
J
JZ-LIANG 已提交
238 239 240 241
        removed_op_type = ['elementwise_mul', 'squared_l2_norm', 'clip_by_norm']
        removed_op_idx = set()
        removed_tmp_var = set()

J
JZ-LIANG 已提交
242 243 244 245
        for idx, op in list(enumerate(main_block.ops)):
            if not _is_gradient_clip_op(op):
                continue

J
JZ-LIANG 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
            if op.type in removed_op_type:
                input_name = op.input("X")[0]
                param_name = input_name[:input_name.find("@GRAD")]
                if not self._is_parameter_in_local_shard(param_name):
                    removed_op_idx.add(idx)
                    if op.type in ['squared_l2_norm', 'clip_by_norm']:
                        for output_name in op.output_arg_names:
                            removed_tmp_var.add(output_name)

        for idx, op in reversed(list(enumerate(main_block.ops))):
            if not _is_gradient_clip_op(op):
                continue
            if idx in removed_op_idx:
                main_block._remove_op(idx, sync=False)

        for varname in removed_tmp_var:
            main_block._remove_var(varname, sync=False)

J
JZ-LIANG 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276
        for idx, op in list(enumerate(main_block.ops)):
            if not _is_gradient_clip_op(op):
                continue
            if op.type == 'sum':
                reserved_vars = []
                for input_name in op.input_arg_names:
                    if input_name not in removed_tmp_var:
                        reserved_vars.append(input_name)
                op.desc.set_input("X", reserved_vars)

                sum_op_output = op.desc.output_arg_names()[0]
                for i, sharding_info in enumerate(self.sharding_infos):
                    new_op = main_block._insert_op(
J
JZ-LIANG 已提交
277
                        idx + i + 1,
J
JZ-LIANG 已提交
278 279 280 281 282 283 284 285 286 287 288
                        type='c_allreduce_sum',
                        inputs={'X': [sum_op_output]},
                        outputs={'Out': [sum_op_output]},
                        attrs={
                            'ring_id': sharding_info.group.id,
                            'op_namescope': "/gradient_clip_model_parallelism",
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Optimize,
                        })
                    dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        main_block.var(sum_op_output))
289 290 291 292
                    # assert dist_attr is not None
                    # naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                    #     new_op, dist_attr.process_mesh, dist_attr.dims_mapping,
                    #     self._dist_context)
J
JZ-LIANG 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
                break

        main_block._sync_with_cpp()

    def _shard_weight_decay(self, main_block):

        if self.stage < 2:
            return

        for idx, op in reversed(list(enumerate(main_block.ops))):
            if not _is_weight_decay_op(op):
                continue
            else:
                raise NotImplementedError(
                    "weight decay is NOT supported by now")
        main_block._sync_with_cpp()

    def _shard_optimizer_ops_and_states(self, main_block, startup_block):

        should_removed_optimizer_states = []
        for idx, op in reversed(list(enumerate(main_block.ops))):
            if not is_optimizer_op(op):
                break

            if op.type in _supported_optimizer_type:
                assert "Param" in op.input_names
                assert len(op.input("Param")) == 1
                param_name = op.input("Param")[0]
                if not self._is_parameter_in_local_shard(param_name):
                    should_removed_optimizer_states.extend([
                        varname for varname in op.output_arg_names
                        if varname != param_name
                    ])
                    main_block._remove_op(idx, sync=False)
327 328 329
                else:
                    self.shared_params_grads.append(
                        self._get_param_grad(param_name))
J
JZ-LIANG 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

        for idx, op in reversed(list(enumerate(startup_block.ops))):
            if len(op.output_arg_names) == 1 and op.output_arg_names[
                    0] in should_removed_optimizer_states:
                startup_block._remove_op(idx, sync=False)

        for varname in should_removed_optimizer_states:
            if main_block.has_var(varname):
                main_block._remove_var(varname, sync=False)
            if startup_block.has_var(varname):
                startup_block._remove_var(varname, sync=False)

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _insert_optimizer_broadcasts(self, main_block, startup_block):

        if self.stage > 2:
            return

        for sharding_info in self.sharding_infos:
            for param in sharding_info.params:
                assert main_block.has_var(param.name)
                assert startup_block.has_var(param.name)

355 356 357 358 359 360 361 362 363 364 365 366 367 368
                new_op = main_block.append_op(type='c_broadcast',
                                              inputs={'X': param},
                                              outputs={'Out': param},
                                              attrs={
                                                  'ring_id':
                                                  sharding_info.group.id,
                                                  'root':
                                                  sharding_info.get_var_rank(
                                                      param.name),
                                                  'use_calc_stream':
                                                  True,
                                                  OP_ROLE_KEY:
                                                  OpRole.Optimize
                                              })
J
JZ-LIANG 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381
                param_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                    param)
                assert param_dist_attr is not None
                naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                    new_op, param_dist_attr.process_mesh,
                    param_dist_attr.dims_mapping, self._dist_context)
        main_block._sync_with_cpp()

    def _is_parameter_in_local_shard(self, param_name):
        assert param_name in self.varname_to_sharding_info
        sharding_info = self.varname_to_sharding_info[param_name]
        return sharding_info.is_in_local_shard(param_name)

382 383 384 385 386 387 388
    def _get_param_grad(self, param_name):
        assert param_name in self.varname_to_sharding_info
        sharding_info = self.varname_to_sharding_info[param_name]
        p_g = sharding_info.get_param_grad(param_name)
        assert p_g is not None
        return p_g

J
JZ-LIANG 已提交
389 390 391 392 393 394 395
    def _shard_gradient_synchronization(self, main_block):

        if self.stage < 2:
            return

        dp_ring_ids = [group.id for group in self.dp_groups]
        for idx, op in reversed(list(enumerate(main_block.ops))):
396
            if _is_param_grad_allreduce_op(op, main_block):
J
JZ-LIANG 已提交
397 398 399
                input_name = op.input_arg_names[0]
                base_name = _get_base_name_from_grad_name(input_name)
                sharding_info = self.varname_to_sharding_info[base_name]
400 401 402 403
                _insert_reduce_op(main_block, idx, input_name,
                                  sharding_info.group.id,
                                  sharding_info.get_var_rank(base_name),
                                  self._dist_context)
404 405
                if not self.partial_sharding or not sharding_info.is_in_local_shard(
                        base_name):
J
JZ-LIANG 已提交
406 407 408 409
                    main_block._remove_op(idx + 1, sync=False)
                else:
                    op._set_attr("ring_id", self.outer_dp_group.id)

410 411 412 413 414 415 416 417 418 419 420
            # NOTE:
            # var@GRAD = sum(var@GRAD@RENAME@0, var@GRAD@RENAME@1)
            # If the var is not in local rank and it is output of many ops, or the var is renamed in another words,
            # the sum op should be removed.
            if _is_param_grad_sum_op(op, main_block):
                out_name = op.output_arg_names[0]
                base_name = _get_base_name_from_grad_name(out_name)
                sharding_info = self.varname_to_sharding_info[base_name]
                if not sharding_info.is_in_local_shard(base_name):
                    main_block._remove_op(idx, sync=False)

J
JZ-LIANG 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        main_block._sync_with_cpp()

    def _shard_parameter(self, main_block, startup_block):

        if self.stage < 3:
            return

        dp_ring_ids = [group.id for group in self.dp_groups]
        for sharding_info in self.sharding_infos:
            need_broadcast_vars, param_usage = sharding_info.get_broadcast_vars_and_param_usage(
                main_block)
            not_used_param_nane = []
            for param_name in param_usage:
                if param_usage[param_name] == 0 and sharding_info.get_var_rank(
                        param_name) != sharding_info.local_rank:
                    not_used_param_nane.append(param_name)

            for idx, op in reversed(list(enumerate(main_block.ops))):
                if is_optimizer_op(op):
                    continue

                for input_name in op.desc.input_arg_names():
443 444 445 446
                    # NOTE hack for embedding op when AMP 02-3
                    # paddle amp force embedding (lookup table) to be run on fp32
                    if _is_param_fp16_cast_op(main_block, op,
                                              sharding_info.param_names):
J
JZ-LIANG 已提交
447 448 449 450 451 452 453 454 455 456
                        continue
                    if input_name not in need_broadcast_vars:
                        continue
                    root_rank = sharding_info.get_var_rank(input_name)
                    if root_rank == sharding_info.local_rank:
                        broadcast_varname = input_name
                    else:
                        broadcast_varname = unique_name.generate(input_name +
                                                                 "@BroadCast")
                        input_var = main_block.var(input_name)
457 458 459 460
                        new_var = main_block.create_var(name=broadcast_varname,
                                                        shape=input_var.shape,
                                                        dtype=input_var.dtype,
                                                        persistable=False)
J
JZ-LIANG 已提交
461 462 463 464 465 466 467 468
                        ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                            input_var)
                        out_var_dist_attr = set_var_dist_attr(
                            self._dist_context, new_var,
                            ref_dist_attr.dims_mapping,
                            ref_dist_attr.process_mesh)
                        op._rename_input(input_name, broadcast_varname)

469 470 471 472 473 474 475
                    _insert_init_and_broadcast_op(main_block, idx,
                                                  broadcast_varname,
                                                  sharding_info.local_rank,
                                                  root_rank,
                                                  sharding_info.group.id,
                                                  op.attr('op_role'),
                                                  self._dist_context)
J
JZ-LIANG 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

            for idx, op in reversed(list(enumerate(main_block.ops))):
                if op.type != "cast":
                    continue
                input_name = op.input_arg_names[0]
                output_name = op.output_arg_names[0]
                if input_name in not_used_param_nane:
                    main_block._remove_op(idx, sync=False)
                    main_block._remove_var(output_name, sync=False)

            for idx, op in reversed(list(enumerate(startup_block.ops))):
                assert len(op.output_arg_names) == 1
                output_name = op.output_arg_names[0]

                if op.type == "c_broadcast" and op.attr(
                        "ring_id") in dp_ring_ids:
                    if self.outer_dp_group and sharding_info.get_var_rank(
                            output_name) == sharding_info.local_rank:
                        op._set_attr("ring_id", self.outer_dp_group.id)
                    else:
                        startup_block._remove_op(idx, sync=False)
                    continue

J
JZ-LIANG 已提交
499 500
                if op.type != "c_broadcast" and output_name in param_usage and sharding_info.get_var_rank(
                        output_name) != sharding_info.local_rank:
J
JZ-LIANG 已提交
501 502
                    startup_block._remove_op(idx, sync=False)

J
JZ-LIANG 已提交
503 504 505 506 507
            for param_name in param_usage:
                if sharding_info.get_var_rank(
                        param_name) != sharding_info.local_rank:
                    main_block._remove_var(param_name, sync=False)
                    startup_block._remove_var(param_name, sync=False)
J
JZ-LIANG 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()


def _insert_init_and_broadcast_op(block, insert_idx, varname, local_rank,
                                  root_rank, ring_id, op_role, dist_context):
    """
    empty op for initialization
    """
    broadcast_var = block.var(varname)
    broadcast_var_dist_attr = dist_context.get_tensor_dist_attr_for_program(
        broadcast_var)

522 523 524 525 526 527 528 529 530 531
    new_op = block._insert_op_without_sync(insert_idx,
                                           type='c_broadcast',
                                           inputs={'X': varname},
                                           outputs={'Out': varname},
                                           attrs={
                                               'ring_id': ring_id,
                                               'root': root_rank,
                                               'use_calc_stream': True,
                                               OP_ROLE_KEY: op_role
                                           })
J
JZ-LIANG 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
        new_op, broadcast_var_dist_attr.process_mesh,
        broadcast_var_dist_attr.dims_mapping, dist_context)
    if local_rank != root_rank:

        new_op = block._insert_op_without_sync(
            insert_idx,
            type="empty",
            outputs={"Out": broadcast_var.name},
            attrs={
                "shape": broadcast_var.shape,
                "dtype": broadcast_var.dtype,
                OP_ROLE_KEY: op_role
            })
        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
            new_op, broadcast_var_dist_attr.process_mesh,
            broadcast_var_dist_attr.dims_mapping, dist_context)
    return


def _insert_reduce_op(block,
                      insert_idx,
                      reduce_var,
                      ring_id,
                      root_id,
                      dist_context,
                      op_role=OpRole.Backward,
                      use_calc_stream=True):
    assert root_id >= 0, "root id should be a positive int, but now root id is {}".format(
        root_id)
562 563 564 565 566 567 568 569 570 571 572
    new_op = block._insert_op_without_sync(insert_idx,
                                           type='c_reduce_sum',
                                           inputs={'X': [reduce_var]},
                                           outputs={'Out': [reduce_var]},
                                           attrs={
                                               'ring_id': ring_id,
                                               'root_id': root_id,
                                               'use_calc_stream':
                                               use_calc_stream,
                                               OP_ROLE_KEY: op_role
                                           })
J
JZ-LIANG 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

    dist_attr = dist_context.get_tensor_dist_attr_for_program(
        block.var(reduce_var))
    naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
        new_op, dist_attr.process_mesh, dist_attr.dims_mapping, dist_context)


def _get_dp_and_sharding_groups(origin_group, sharding_group_size, rank):
    dp_axis = 0
    sharding_axis = 1
    shape = [len(origin_group) // sharding_group_size, sharding_group_size]

    dp_group = _get_comm_group(origin_group, shape, dp_axis, rank)
    sharding_group = _get_comm_group(origin_group, shape, sharding_axis, rank)

    return dp_group, sharding_group


def _is_gradient_clip_op(op):
    return op.desc.has_attr("op_namescope") \
        and op.desc.attr("op_namescope").startswith("/gradient_clip")


def _is_weight_decay_op(op):
    return op.desc.has_attr("op_namescope") \
        and op.desc.attr("op_namescope").startswith("/regularization")


def _is_param_grad_fp32_cast_op(block, op):
    if not is_backward_op(op):
        return False
    if not _is_desired_cast_op(block, op, core.VarDesc.VarType.FP16,
                               core.VarDesc.VarType.FP32):
        return False
    output_name = op.desc.output_arg_names()[0]
    base_name = output_name[:output_name.find("@")]
    if not block.has_var(base_name):
        return False
    return block.var(base_name).is_parameter


def _is_param_fp16_cast_op(block, op, params):

    if is_optimizer_op(op):
        return False
    if not _is_desired_cast_op(block, op):
        return False
    input_name = op.desc.input_arg_names()[0]
    if input_name not in params:
        return False
    return True


def _is_desired_cast_op(block,
                        op,
                        src_var_type=core.VarDesc.VarType.FP32,
                        dst_var_type=core.VarDesc.VarType.FP16):
    if op.type != "cast":
        return False
    assert (len(op.desc.input_arg_names()) == 1)
    assert (len(op.desc.output_arg_names()) == 1)
    input_var = block.var(op.desc.input_arg_names()[0])
    output_var = block.var(op.desc.output_arg_names()[0])

    if input_var.dtype != src_var_type or \
        output_var.dtype != dst_var_type:
        return False

    return True


def _get_base_name_from_grad_name(grad_name):
    base_name = None
    if ".cast_fp16@GRAD" in grad_name:
        base_name = grad_name[:grad_name.find(".cast_fp16@GRAD")]
    elif "@GRAD" in grad_name:
        base_name = grad_name[:grad_name.find("@GRAD")]
    return base_name


653 654 655 656 657 658 659 660 661 662 663 664 665 666
def _is_param_grad_allreduce_op(op, block):

    if not is_data_parallel_reduce_op(op):
        return False

    output_name = op.output_arg_names[0]
    base_name = _get_base_name_from_grad_name(output_name)

    if not block.has_var(base_name):
        return False

    return block.var(base_name).is_parameter


667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
def _is_param_grad_sum_op(op, block):

    if not is_backward_op(op):
        return False
    if op.type != "sum":
        return False

    output_name = op.output_arg_names[0]
    base_name = _get_base_name_from_grad_name(output_name)

    if not block.has_var(base_name):
        return False

    return block.var(base_name).is_parameter


J
JZ-LIANG 已提交
683 684 685 686
def _is_forward_op(op):
    return op.attr("op_role") == 0


J
JZ-LIANG 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
def _inference_data_parallel_group_for_operator(rank_id, op, dist_context):

    dp_group = None
    for input_name in op.input_arg_names:
        if not is_parameter_related(input_name, op.block):
            dist_attr = dist_context.get_op_dist_attr_for_program(op)
            process_mesh = dist_attr.process_mesh
            input_dim_mapping = dist_attr.get_input_dims_mapping(input_name)
            mesh_shape = process_mesh.topology
            # TODO(JZ-LIANG) replace with specific batch size dimension
            batch_size_axis = input_dim_mapping[0]
            if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                group_ranks = _get_comm_group(process_mesh.processes,
                                              process_mesh.topology,
                                              batch_size_axis, rank_id)
                dp_group = new_process_group(group_ranks)
                break

    return dp_group


def shard_parameters(params, group_size):
    # TODO(JZ-LIANG) support multiple partition methods
    # method1: greedy even but unorder
    # method2: roughly even with oreder
    mapping = {}
    for rank_ in range(group_size):
        mapping[rank_] = []
    sizes = [0] * group_size
    for param in params:
        rank = sizes.index(min(sizes))
        mapping[rank].append(param)
        numel = reduce(lambda x, y: x * y, param.shape)
        assert numel > 0, "param [{}] should larger than 0, but it is [{}]".format(
            param.name, numel)
        sizes[rank] += numel

    return mapping


class ShardingInfo(object):
728

729
    def __init__(self, group, rank, params_grads):
J
JZ-LIANG 已提交
730
        self.group = group
731 732 733 734 735
        self.params_grads = dict([(p.name, (p, g)) for p, g in params_grads])
        assert len(self.params_grads) == len(set(
            self.params_grads)), "found duplicated param in params_grads"

        self.params = [p for p, _ in params_grads]
J
JZ-LIANG 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        self.param_names = [p.name for p in self.params]
        self.group_size = group.nranks
        self.global_rank = rank
        self.local_rank = group.ranks.index(self.global_rank)
        # rank in below mapping are local rank in this sharding group
        self.rank_to_params = shard_parameters(self.params, self.group_size)
        # include fp32 and fp16 param
        self.param_to_rank = dict()
        self._map_param_to_rank()

    def _map_param_to_rank(self):
        """
        mapping parameters to the rank which holds it.
        """
        for rank, params in self.rank_to_params.items():
            for param in params:
                self.param_to_rank[param.name] = rank

    def get_var_rank(self, varname):
        if varname in self.param_to_rank:
            return self.param_to_rank[varname]
        return -1

759
    # determine fp32 and fp16 (cast) param
J
JZ-LIANG 已提交
760 761 762
    def is_in_local_shard(self, param_name):
        return self.get_var_rank(param_name) == self.local_rank

763 764 765 766
    # NOTE the follwo logic is designed for supporting AMP O1 when
    # the param would be cast to fp16 before used for caculation.
    # and sharding should only broadcast the casted fp16 param
    # instead of the origin fp32 version param.
J
JZ-LIANG 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    def get_broadcast_vars_and_param_usage(self, block):
        broadcast_vars = set([])
        fp16_params = set([])
        fp16_to_fp32 = {}

        param_usage = {x: 0 for x in self.param_names}
        for op in block.ops:
            if is_optimizer_op(op):
                continue
            for input_name in op.desc.input_arg_names():
                if input_name in self.param_names:
                    param_usage[input_name] += 1

        for op in block.ops:
            if not _is_param_fp16_cast_op(block, op, self.param_names):
                continue
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            broadcast_vars.add(output_name)
            fp16_params.add(output_name)
            fp16_to_fp32[output_name] = input_name
            param_usage[input_name] -= 1
            self.param_to_rank[output_name] = self.param_to_rank[input_name]

        for param, usage in param_usage.items():
            if usage > 0:
                broadcast_vars.add(param)
        return broadcast_vars, param_usage
795 796 797 798 799 800 801 802

    def get_param_grad(self, param_name):
        if not self.is_in_local_shard(param_name):
            raise ValueError(
                "param[{}] not in current rank.".format(param_name))
        if param_name not in self.params_grads:
            raise ValueError('param[{}] not in params_grads'.format(param_name))
        return self.params_grads.get(param_name, None)