parameter_server_runtime.py 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import warnings

import paddle.fluid as fluid
from paddle.fluid import core
20 21 22 23
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
24
from paddle.fluid.framework import Variable
25 26

from .runtime_base import RuntimeBase
C
Chengmo 已提交
27
from ..base.private_helper_function import wait_server_ready
28

29 30
__all__ = []

31 32

class ParameterServerRuntime(RuntimeBase):
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    def __init__(self):
        super(ParameterServerRuntime, self).__init__()
        self._communicator = None

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
        self.origin_main_program = context["origin_main_program"]
        self.origin_startup_program = context["origin_startup_program"]
        self.async_strategy = self._get_distributed_strategy()
        self.compiled_strategy = self.build_compiled_startegy()

    def _get_distributed_strategy(self):
        strategy = None

        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

        dist_strategy = self.context["valid_strategy"]
        k_steps = dist_strategy.a_sync_configs["k_steps"]

        if not dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_sync_strategy()

        if dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_async_strategy()

        if dist_strategy.a_sync and k_steps > 0:
            strategy = StrategyFactory.create_geo_strategy(k_steps)

        if not strategy:
            raise ValueError("k_steps must be invalid value, please check")

        return strategy

    def build_compiled_startegy(self):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy

71 72 73 74
        compiled_config = CompileTimeStrategy(self.origin_main_program,
                                              self.origin_main_program,
                                              self.async_strategy,
                                              self.role_maker)
75 76
        return compiled_config

77 78 79 80 81 82 83 84 85 86 87 88 89 90
    def _load_sparse_params(self,
                            executor,
                            dirname,
                            varnames,
                            main_program=None):
        assert vars != None
        check_vars = []
        load_prog = Program()
        load_block = load_prog.global_block()

        def _in_varnames(var):
            return var.name in varnames

        load_vars = list(
91 92
            filter(_in_varnames,
                   fluid.default_main_program().list_vars()))
93 94 95 96 97 98 99 100 101 102 103 104
        if main_program is None:
            main_program = self.origin_main_program

        from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts
        for each_var in load_vars:
            assert isinstance(each_var, Variable)

            origin_varname, _, _ = _get_varname_parts(each_var.name)

            new_var = fluid.io._clone_var_in_block_(load_block, each_var)
            var_path = os.path.join(dirname, origin_varname)
            if not os.path.exists(var_path):
105 106 107
                raise ValueError(
                    "SelectedRows var {} can not find at {}".format(
                        new_var.name, var_path))
108 109

            if os.path.isfile(var_path):
110 111 112 113 114 115 116 117 118 119 120 121 122
                load_block.append_op(type='sparse_tensor_load',
                                     inputs={},
                                     outputs={'Out': [new_var]},
                                     attrs={
                                         'file_path':
                                         os.path.join(dirname, origin_varname),
                                         'node_index':
                                         self.role_maker._server_index(),
                                         'node_num':
                                         self.role_maker._server_num(),
                                         'shape':
                                         each_var.shape
                                     })
123 124 125 126 127
            check_vars.append(each_var)

        executor.run(load_prog)

    def _load_distributed_params(self, dirname, varnames):
128 129 130 131 132 133 134 135 136 137 138
        from paddle.fluid.communicator import LargeScaleKV
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts

        scale_kv = LargeScaleKV()
        for varname in varnames:
            origin_varname, _, _ = _get_varname_parts(varname)
            sparse_dir = os.path.join(dirname, origin_varname, varname)
            scale_kv.load(varname, sparse_dir)

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

            from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts

            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

            if origin_varname == "learning_rate_0":
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
C
Chengmo 已提交
154 155
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
156 157 158 159 160 161
                return False
            return var.persistable

        return is_valid

    def _init_worker(self):
162

163 164
        def sync_strategy_envs():
            kwargs = {}
165 166 167
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
168 169 170 171 172 173 174 175 176 177
            return kwargs

        def geo_strategy_envs():
            from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames

            def get_sparse_attrs():
                opt_init_map = {}
                opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
                opt_init_map["fill_constant"] = ["value"]
                opt_init_map["uniform_random"] = ["seed", "min", "max"]
178 179 180
                opt_init_map["truncated_gaussian_random"] = [
                    "seed", "mean", "std"
                ]
181 182 183 184 185 186 187 188 189 190 191 192 193

                dist_varnames = get_sparse_tablenames(self.origin_main_program,
                                                      True)
                sparse_varnames = get_sparse_tablenames(
                    self.origin_main_program, False)

                if len(dist_varnames) != 0:
                    raise ValueError(
                        "GeoStrategy can not support large scale embeding now, please use fluid.layers.embedding"
                    )

                init_attrs = []
                for value_name in sparse_varnames:
194 195
                    value_var = self.origin_main_program.global_block(
                    ).vars[value_name]
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
                    value_attr = [
                        value_name,
                        ",".join([str(dim) for dim in value_var.shape])
                    ]
                    for op in self.origin_startup_program.global_block().ops:
                        if op.type in opt_init_map.keys(
                        ) and value_name == op.output("Out")[0]:
                            init_attr = [op.type]
                            for attr in opt_init_map[op.type]:
                                init_attr.append(str(op.attr(attr)))
                            value_attr.append("&".join(init_attr))
                            init_attrs.append(":".join(value_attr))
                            break
                return "#".join(init_attrs)

            kwargs = {}
212
            kwargs["trainers"] = self.role_maker._worker_num()
213 214 215
            kwargs["sparse_attrs"] = get_sparse_attrs()
            return kwargs

216
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_lr_ops, _has_global_step
217 218 219 220 221

        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
            SyncStrategy, GeoStrategy

        trainer_config = self.async_strategy.get_trainer_runtime_config()
222
        print(trainer_config)
223

C
Chengmo 已提交
224 225 226 227 228 229 230 231 232 233 234
        dist_strategy = self.context["valid_strategy"]
        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        if launch_barrier:
            # for trainer wait server ready
            wait_server_ready(self.role_maker._get_pserver_endpoints())

            # for ps-heter mode, wait heter worker ready
            if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker(
            ):
                wait_server_ready(self.role_maker._get_heter_worker_endpoints())

235 236 237
        lrs = _has_global_step(_get_lr_ops(self.origin_main_program))

        if lrs:
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
            kwargs = {"need_global_step": "1"}
        else:
            kwargs = {"need_global_step": "0"}

        if isinstance(self.async_strategy, GeoStrategy):
            geo_kwargs = geo_strategy_envs()
            kwargs.update(geo_kwargs)
        if isinstance(self.async_strategy, SyncStrategy):
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

        kwargs = kwargs if kwargs else None

        send_ctx = self.compiled_strategy.get_communicator_send_context()

        if self.compiled_strategy.is_geo_mode():
            recv_ctx = self.compiled_strategy.get_communicator_recv_context(
                recv_type=4)
        else:
            recv_ctx = self.compiled_strategy.get_communicator_recv_context(
                recv_type=1)

        from paddle.fluid.communicator import Communicator
        self._communicator = Communicator(
            trainer_config.mode, kwargs,
            trainer_config.get_communicator_flags())
        self._communicator.init_with_ctx(send_ctx, recv_ctx)

        if not self._communicator.is_running():
            self._communicator.start()
        else:
            warnings.warn("communicator has been initialized, skip")

271
    def _get_executor(self):
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        executor = fluid.Executor(fluid.CPUPlace())
        if self.role_maker._is_heter_parameter_server_mode:
            heter_worker_device_guard = self.context[
                "valid_strategy"].a_sync_configs[
                    "heter_worker_device_guard"].upper()
            if heter_worker_device_guard not in ["GPU", "XPU", "CPU"]:
                raise ValueError("Heter Worker Not Support Device {}".format(
                    heter_worker_device_guard))
            if self.role_maker._is_heter_worker():
                if heter_worker_device_guard == "GPU":
                    executor = Executor(
                        fluid.CUDAPlace(
                            int(os.getenv("FLAGS_selected_gpus", "0"))))
                elif heter_worker_device_guard == "XPU":
                    executor = Executor(
                        fluid.XPUPlace(
                            int(os.getenv("FLAGS_selected_xpus", "0"))))
289 290
        return executor

291 292 293 294 295 296 297 298
    def _init_server(self, *args, **kwargs):
        if len(args) > 1:
            raise ValueError("init server can only accept 1 args: `dirname`")
        elif len(args) == 1:
            model_dirname = args[0]
        else:
            model_dirname = None

299
        executor = self._get_executor()
300 301
        if self.role_maker._is_heter_worker(
        ) and self.context["valid_strategy"].a_sync_configs["launch_barrier"]:
302 303
            # for heter trainer wait server ready
            wait_server_ready(self.role_maker._get_pserver_endpoints())
304 305
        executor.run(fluid.default_startup_program())

T
tangwei12 已提交
306 307
        if self.role_maker._is_heter_worker():
            self._init_worker()
308 309
            return

310 311 312 313 314 315 316
        sparse_varnames = self.compiled_strategy.get_sparse_varname_on_ps(False)
        sparse_related_optimize_varnames = []
        for var_name in sparse_varnames:
            sparse_related_optimize_varnames += self.compiled_strategy.get_optimize_varname_on_ps(
                var_name)
        sparse_related_optimize_varnames = list(
            set(sparse_related_optimize_varnames))
317
        distribtued_varnames = self.compiled_strategy.get_sparse_varname_on_ps(
318 319 320 321 322 323 324
            True)
        distributed_related_optimize_varnames = []
        for var_name in distribtued_varnames:
            distributed_related_optimize_varnames += self.compiled_strategy.get_optimize_varname_on_ps(
                var_name)
        distributed_related_optimize_varnames = list(
            set(distributed_related_optimize_varnames))
325 326 327

        remaining_vars = list(
            filter(
328 329 330 331
                ParameterServerRuntime.__exclude_vars(
                    sparse_varnames + distribtued_varnames +
                    sparse_related_optimize_varnames +
                    distributed_related_optimize_varnames),
332 333
                fluid.default_main_program().list_vars()))

334 335 336 337 338 339 340
        if not model_dirname:
            return

        if not os.path.isdir(model_dirname):
            raise ValueError("There is no directory named '%s'", model_dirname)

        # load dense
341 342 343 344
        fluid.io.load_vars(executor,
                           main_program=fluid.default_main_program(),
                           dirname=model_dirname,
                           vars=remaining_vars)
345

346
        # load sparse
347 348 349 350
        self._load_sparse_params(executor=executor,
                                 dirname=model_dirname,
                                 varnames=sparse_varnames +
                                 sparse_related_optimize_varnames)
351

352
        # load large scale
353 354 355
        self._load_distributed_params(dirname=model_dirname,
                                      varnames=distribtued_varnames +
                                      distributed_related_optimize_varnames)
356 357

    def _run_server(self):
358
        executor = self._get_executor()
359 360 361 362
        executor.run(fluid.default_main_program())

    def _stop_worker(self):
        self._communicator.stop()
363
        executor = self._get_executor()
364
        executor.close()
365 366 367 368 369 370 371 372 373 374 375 376 377 378

    def _get_optimizer_status(self, op, param_name):
        supported_opts = [
            "sgd", "adam", "adagrad", "adamax", "momentum", "lars_momentum",
            "rmsprop", "decayed_adagrad", "ftrl"
        ]

        reshaped_val_map = {}
        reshaped_val_map["sgd"] = []
        reshaped_val_map["adam"] = ["moment1_0", "moment2_0"]
        reshaped_val_map["adagrad"] = ["moment_0"]
        reshaped_val_map["adamax"] = ["moment_0", "inf_norm_0"]
        reshaped_val_map["momentum"] = ["velocity_0"]
        reshaped_val_map["lars_momentum"] = ["velocity_0"]
379 380 381
        reshaped_val_map["rmsprop"] = [
            "momentum_0", "mean_square_0", "mean_grad_0"
        ]
382 383 384 385 386 387 388 389 390
        reshaped_val_map["decayed_adagrad"] = ["moment_0"]
        reshaped_val_map["ftrl"] = ["squared_0", "linear_0"]

        orishaped_val_map = {}
        orishaped_val_map["adam"] = ["beta1_pow_acc_0", "beta2_pow_acc_0"]
        orishaped_val_map["adamax"] = ["beta1_pow_acc_0"]

        if op not in supported_opts:
            raise ValueError(
391 392
                "fleet can not support optimizer: {}, only this can be supported: {}"
                .format(op, supported_opts))
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

        reshaped_names = [
            param_name + "_" + val for val in reshaped_val_map[op]
        ]

        if op not in orishaped_val_map:
            origin_names = []
        else:
            origin_names = [
                param_name + "_" + val for val in orishaped_val_map[op]
            ]
        return reshaped_names, origin_names

    def _get_optimizer_op(self, param_name):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops

        opts = _get_optimize_ops(self.origin_main_program)
        for op in opts:
            if "Param" in op.input_names and \
C
Chengmo 已提交
412
                    "LearningRate" in op.input_names and op.input("Param")[0] == param_name:
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
                return op

    def _save_dense_params(self, executor, dirname, context, main_program):
        self._communicator.recv()

        prog = Program()
        block = prog.global_block()
        local_vars = []

        for name, var_ctx in context.items():
            if len(var_ctx.origin_varnames()) != 1:
                raise ValueError("Dense can not support split now.")

            varname = var_ctx.origin_varnames()[0]
            local_vars.append(varname)

            optimizer = self._get_optimizer_op(varname)
            reshaped_varnames, origin_varnames = self._get_optimizer_status(
                optimizer.type, varname)

            for var_name in [varname] + reshaped_varnames + origin_varnames:
                var = self.origin_main_program.global_block().vars[var_name]
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
                block.append_op(type='recv_save',
                                attrs={
                                    "trainer_id":
                                    self.role_maker._worker_index(),
                                    "shape":
                                    var.shape,
                                    "slice_shapes":
                                    [",".join([str(i) for i in var.shape])],
                                    "slice_varnames": [var.name],
                                    "remote_varnames": [var.name],
                                    "is_sparse":
                                    False,
                                    "endpoints":
                                    var_ctx.split_endpoints(),
                                    "file_path":
                                    os.path.join(dirname, var.name)
                                })
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

        executor.run(prog)
        return local_vars

    def _save_sparse_params(self, executor, dirname, context, main_program):
        prog = Program()
        block = prog.global_block()
        local_vars = []

        for name, var_ctx in context.items():
            if len(var_ctx.origin_varnames()) != 1:
                raise ValueError("Dense can not support split now.")

            varname = var_ctx.origin_varnames()[0]
            local_vars.append(varname)

            optimizer = self._get_optimizer_op(varname)
            reshaped_varnames, origin_varnames = self._get_optimizer_status(
                optimizer.type, varname)

            var = self.origin_main_program.global_block().vars[varname]
            slice_shapes = []
            dims1 = ",".join([str(i) for i in var.shape[1:]])

            for section in var_ctx.sections():
                slice_shapes.append(str(section) + dims1)

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
            block.append_op(type='recv_save',
                            attrs={
                                "trainer_id":
                                self.role_maker._worker_index(),
                                "shape":
                                var.shape,
                                "slice_shapes":
                                slice_shapes,
                                "slice_varnames":
                                var_ctx.split_varnames(),
                                "remote_varnames":
                                var_ctx.split_varnames(),
                                "is_sparse":
                                True,
                                "endpoints":
                                var_ctx.split_endpoints(),
                                "pserver_num":
                                len(self.role_maker._get_pserver_endpoints()),
                                "file_path":
                                os.path.join(dirname, var.name)
                            })
500 501

            for reshaped_varname in reshaped_varnames:
502 503
                var = self.origin_main_program.global_block(
                ).vars[reshaped_varname]
504 505 506 507

                slice_varnames = []
                remote_varnames = []
                for i in range(len(var_ctx.split_varnames())):
508 509
                    slice_varnames.append("{}.block{}".format(
                        reshaped_varname, i))
510 511 512 513 514
                    remote_varnames.append(reshaped_varname)

                block.append_op(
                    type='recv_save',
                    attrs={
515
                        "trainer_id": self.role_maker._worker_index(),
516 517 518 519 520 521 522
                        "shape": var.shape,
                        "slice_shapes": slice_shapes,
                        "slice_varnames": slice_varnames,
                        "remote_varnames": remote_varnames,
                        "is_sparse": True,
                        "endpoints": var_ctx.split_endpoints(),
                        "pserver_num":
523
                        len(self.role_maker._get_pserver_endpoints()),
524 525 526 527
                        "file_path": os.path.join(dirname, var.name)
                    })

            for origin_varname in origin_varnames:
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
                var = self.origin_main_program.global_block(
                ).vars[origin_varname]

                block.append_op(type='recv_save',
                                attrs={
                                    "trainer_id":
                                    self.role_maker._worker_index(),
                                    "shape":
                                    var.shape,
                                    "slice_shapes":
                                    [",".join([str(i) for i in var.shape])],
                                    "slice_varnames": [origin_varname],
                                    "remote_varnames": [origin_varname],
                                    "is_sparse":
                                    False,
                                    "endpoints":
                                    var_ctx.split_endpoints()[:1],
                                    "file_path":
                                    os.path.join(dirname, var.name)
                                })
548 549 550
        executor.run(prog)
        return context.keys()

551
    def _save_distributed_params(self, executor, dirname, context, mode):
552 553 554 555
        prog = Program()
        block = prog.global_block()

        for name, var_ctx in context.items():
556 557 558 559 560 561 562 563 564
            block.append_op(type='checkpoint_notify',
                            attrs={
                                "varname": name,
                                "mode": mode,
                                "slice_varnames": var_ctx.split_varnames(),
                                "remote_varnames": var_ctx.split_varnames(),
                                "endpoints": var_ctx.split_endpoints(),
                                "dirname": dirname
                            })
565 566 567 568

        executor.run(prog)
        return context.keys()

569 570
    def _save_distributed_persistables(self, executor, dirname, main_program,
                                       mode):
571
        dense_ctx = self.compiled_strategy.get_communicator_recv_context(
572
            recv_type=1, use_origin_program=True)
573 574

        sparse_ctx = self.compiled_strategy.get_communicator_recv_context(
575
            recv_type=2, use_origin_program=True)
576 577

        distributed_ctx = self.compiled_strategy.get_communicator_recv_context(
578
            recv_type=3, use_origin_program=True)
579 580 581 582

        recv_dense_varnames = self._save_dense_params(executor, dirname,
                                                      dense_ctx, main_program)

583 584 585
        recv_sparse_varnames = self._save_sparse_params(executor, dirname,
                                                        sparse_ctx,
                                                        main_program)
586 587

        recv_distributed_varnames = self._save_distributed_params(
588
            executor, dirname, distributed_ctx, mode)
589 590 591 592 593

        saved_varnames = recv_dense_varnames + list(
            recv_sparse_varnames) + list(recv_distributed_varnames)

        remaining_vars = list(
594 595
            filter(ParameterServerRuntime.__exclude_vars(saved_varnames),
                   main_program.list_vars()))
596

597 598 599 600
        fluid.io.save_vars(executor,
                           main_program=main_program,
                           dirname=dirname,
                           vars=remaining_vars)
601 602 603 604 605

    def _ps_inference_save_persistables(self,
                                        executor,
                                        dirname,
                                        main_program=None,
606
                                        mode=0,
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
                                        **kwargs):
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save_persistables() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save_persistables() function, executor must be as Executor type"
            )

        if main_program is None:
630
            main_program = self.compiled_strategy.get_origin_ps_main_program()
631 632 633 634 635 636

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

637 638
        self._save_distributed_persistables(executor, dirname, main_program,
                                            mode)
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
                                           export_for_deployment=True):
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save_inference_model() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save_inference_model() function, executor must be as Executor type"
            )

        if main_program is not None:
            if isinstance(main_program, CompiledProgram):
                raise TypeError(
                    "in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed"
                )
            fluid.io.save_inference_model(dirname, feeded_var_names,
                                          target_vars, executor, main_program,
                                          None, None, export_for_deployment)
        else:
            fluid.io.save_inference_model(dirname, feeded_var_names,
                                          target_vars, executor,
                                          self.origin_main_program, None, None,
                                          export_for_deployment, True)

            model_basename = "__model__"
            model_filename = os.path.join(dirname, model_basename)

            with open(model_filename, "rb") as f:
                program_desc_str = f.read()

            program = Program.parse_from_string(program_desc_str)
            program._copy_dist_param_info_from(fluid.default_main_program())
684 685 686 687
            self._ps_inference_save_persistables(executor,
                                                 dirname,
                                                 program,
                                                 mode=0)
688 689 690 691 692 693

    def _save_inference_model(self, *args, **kwargs):
        self._ps_inference_save_inference_model(*args, **kwargs)

    def _save_persistables(self, *args, **kwargs):
        self._ps_inference_save_persistables(*args, **kwargs)