flash_attn_grad_kernel.cu 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/flash_attn_grad_kernel.h"
16
#include "glog/logging.h"  // For VLOG()
17 18
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/bfloat16.h"
19
#include "paddle/phi/core/flags.h"
20 21 22 23 24 25 26 27 28 29
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/arange_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/reshape_kernel.h"

#ifdef PADDLE_WITH_FLASHATTN
#include "paddle/phi/backends/dynload/flashattn.h"
#endif

30 31
DECLARE_bool(cudnn_deterministic);

32 33 34
namespace phi {

template <typename T, typename Context>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
void FlashAttnUnpaddedGradKernel(const Context& ctx,
                                 const DenseTensor& q,
                                 const DenseTensor& k,
                                 const DenseTensor& v,
                                 const DenseTensor& cu_seqlens_q,
                                 const DenseTensor& cu_seqlens_k,
                                 const DenseTensor& out,
                                 const DenseTensor& softmax_lse,
                                 const DenseTensor& seed_offset,
                                 const DenseTensor& dout,
                                 int64_t max_seqlen_q,
                                 int64_t max_seqlen_k,
                                 float scale,
                                 float dropout,
                                 bool causal,
                                 DenseTensor* dq,
                                 DenseTensor* dk,
                                 DenseTensor* dv) {
53 54 55 56 57 58 59 60
#ifdef PADDLE_WITH_FLASHATTN
  ctx.template Alloc<T>(dq);
  ctx.template Alloc<T>(dk);
  ctx.template Alloc<T>(dv);

  cudaStream_t stream = ctx.stream();
  bool is_bf16 = q.dtype() == DataType::BFLOAT16 ? true : false;

C
Chitsing KUI 已提交
61
  // q,k,v [total_*, num_heads, head_dim]
62 63

  auto dims = q.dims();
C
Chitsing KUI 已提交
64 65 66
  int64_t total_q = dims[0];
  int64_t num_heads = dims[1];
  int64_t head_size = dims[2];
67

C
Chitsing KUI 已提交
68 69
  int64_t total_k = k.dims()[0];
  int64_t batch_size = cu_seqlens_q.numel() - 1;
70 71

  int num_splits = 0;  // 0 for an internal heuristic, which is optimal
72 73 74
  if (FLAGS_cudnn_deterministic) {
    num_splits = 1;
  }
75 76
  bool zero_tensors = false;

77 78 79
  const int64_t* seed_offset_data = seed_offset.data<int64_t>();
  uint64_t seed = static_cast<uint64_t>(seed_offset_data[0]);
  uint64_t offset = static_cast<uint64_t>(seed_offset_data[1]);
80

81 82 83
  VLOG(4) << "FlashAttn bwd seed: " << seed << ", offset: " << offset
          << ", num_splits:" << num_splits;

C
Chitsing KUI 已提交
84
  int64_t seq_len_q = ((max_seqlen_q + 16 - 1) / 16) * 16;
85 86 87 88 89 90
  DenseTensor dsoftmax = Empty<float>(ctx, {batch_size, num_heads, seq_len_q});

  uint64_t workspace_size;

  // calculate workspace size before execution
  bool succ = phi::dynload::flash_attn_bwd(
C
Chitsing KUI 已提交
91 92 93
      q.data(),
      k.data(),
      v.data(),
94 95 96 97 98 99 100 101 102 103 104 105
      dq->data(),
      dk->data(),
      dv->data(),
      nullptr,  // for calculation workspace size
      dout.data(),
      cu_seqlens_q.data(),
      cu_seqlens_k.data(),
      total_q,
      total_k,
      batch_size,
      num_heads,
      head_size,
C
Chitsing KUI 已提交
106 107
      max_seqlen_q,
      max_seqlen_k,
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
      dropout,
      scale,
      zero_tensors,
      causal,
      is_bf16,
      num_splits,
      const_cast<float*>(softmax_lse.data<float>()),
      dsoftmax.data(),
      nullptr,
      &workspace_size,
      stream,
      seed,
      offset);

  if (!succ) {
    PADDLE_THROW(phi::errors::External(phi::dynload::flash_attn_error()));
  }

  DenseTensor workspace;
  if (workspace_size > 0) {
    workspace = Empty<float>(ctx, {int64_t(workspace_size / sizeof(float))});
  }

  succ = phi::dynload::flash_attn_bwd(
C
Chitsing KUI 已提交
132 133 134
      q.data(),
      k.data(),
      v.data(),
135 136 137 138 139 140 141 142 143 144 145 146
      dq->data(),
      dk->data(),
      dv->data(),
      out.data(),
      dout.data(),
      cu_seqlens_q.data(),
      cu_seqlens_k.data(),
      total_q,
      total_k,
      batch_size,
      num_heads,
      head_size,
C
Chitsing KUI 已提交
147 148
      max_seqlen_q,
      max_seqlen_k,
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
      dropout,
      scale,
      zero_tensors,
      causal,
      is_bf16,
      num_splits,
      const_cast<float*>(softmax_lse.data<float>()),
      dsoftmax.data(),
      workspace_size > 0 ? workspace.data() : nullptr,
      &workspace_size,
      stream,
      seed,
      offset);

  if (!succ) {
    PADDLE_THROW(phi::errors::External(phi::dynload::flash_attn_error()));
  }

#endif
}

C
Chitsing KUI 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
template <typename T, typename Context>
void FlashAttnGradKernel(const Context& ctx,
                         const DenseTensor& q,
                         const DenseTensor& k,
                         const DenseTensor& v,
                         const DenseTensor& out,
                         const DenseTensor& softmax_lse,
                         const DenseTensor& seed_offset,
                         const DenseTensor& dout,
                         float dropout,
                         bool causal,
                         DenseTensor* dq,
                         DenseTensor* dk,
                         DenseTensor* dv) {
#ifdef PADDLE_WITH_FLASHATTN
  // q,k,v [batch_size, seq_len, num_heads, head_dim]

  auto dims = q.dims();
  int64_t batch_size = dims[0];
  int64_t seq_len_q = dims[1];
  int64_t num_heads = dims[2];
  int64_t head_size = dims[3];

  int64_t seq_len_k = k.dims()[1];

  int64_t total_q = batch_size * seq_len_q;
  int64_t total_k = batch_size * seq_len_k;

  float scale = 1.0f / std::sqrt(head_size);

200 201 202
  VLOG(4) << "FlashAttn bwd dims q[" << q.dims() << "], k[" << k.dims()
          << "], v[" << v.dims() << "]";

203 204 205 206
  DenseTensor q_t_s, k_t_s, v_t_s;
  q_t_s.ShareDataWith(q).Resize({total_q, num_heads, head_size});
  k_t_s.ShareDataWith(k).Resize({total_k, num_heads, head_size});
  v_t_s.ShareDataWith(v).Resize({total_k, num_heads, head_size});
C
Chitsing KUI 已提交
207 208 209 210 211 212 213 214

  DenseTensor cu_seqlens_q;
  DenseTensor cu_seqlens_k;
  ArangeNullaryKernel<int32_t, Context>(
      ctx, 0, (batch_size + 1) * seq_len_q, seq_len_q, &cu_seqlens_q);
  ArangeNullaryKernel<int32_t, Context>(
      ctx, 0, (batch_size + 1) * seq_len_k, seq_len_k, &cu_seqlens_k);

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  FlashAttnUnpaddedGradKernel<T, Context>(ctx,
                                          q_t_s,
                                          k_t_s,
                                          v_t_s,
                                          cu_seqlens_q,
                                          cu_seqlens_k,
                                          out,
                                          softmax_lse,
                                          seed_offset,
                                          dout,
                                          seq_len_q,
                                          seq_len_k,
                                          scale,
                                          dropout,
                                          causal,
                                          dq,
                                          dk,
                                          dv);
C
Chitsing KUI 已提交
233 234 235 236

#endif
}

237 238
}  // namespace phi

239
PD_REGISTER_KERNEL(flash_attn_unpadded_grad,
C
Chitsing KUI 已提交
240 241
                   GPU,
                   ALL_LAYOUT,
242
                   phi::FlashAttnUnpaddedGradKernel,
C
Chitsing KUI 已提交
243 244
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
C
Chitsing KUI 已提交
245
  kernel->InputAt(7).SetBackend(phi::Backend::ALL_BACKEND);  // seed_offset
C
Chitsing KUI 已提交
246 247
}

248 249 250 251 252 253
PD_REGISTER_KERNEL(flash_attn_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::FlashAttnGradKernel,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
C
Chitsing KUI 已提交
254
  kernel->InputAt(5).SetBackend(phi::Backend::ALL_BACKEND);  // seed_offset
255
}