flash_attn_grad_kernel.cu 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/flash_attn_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/arange_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/reshape_kernel.h"

#ifdef PADDLE_WITH_FLASHATTN
#include "paddle/phi/backends/dynload/flashattn.h"
#endif

namespace phi {

template <typename T, typename Context>
C
Chitsing KUI 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
void FlashAttnRawGradKernel(const Context& ctx,
                            const DenseTensor& q,
                            const DenseTensor& k,
                            const DenseTensor& v,
                            const DenseTensor& cu_seqlens_q,
                            const DenseTensor& cu_seqlens_k,
                            const DenseTensor& out,
                            const DenseTensor& softmax_lse,
                            const DenseTensor& seed_offset,
                            const DenseTensor& dout,
                            int64_t max_seqlen_q,
                            int64_t max_seqlen_k,
                            float scale,
                            float dropout,
                            bool causal,
                            DenseTensor* dq,
                            DenseTensor* dk,
                            DenseTensor* dv) {
49 50 51 52 53 54 55 56
#ifdef PADDLE_WITH_FLASHATTN
  ctx.template Alloc<T>(dq);
  ctx.template Alloc<T>(dk);
  ctx.template Alloc<T>(dv);

  cudaStream_t stream = ctx.stream();
  bool is_bf16 = q.dtype() == DataType::BFLOAT16 ? true : false;

C
Chitsing KUI 已提交
57
  // q,k,v [total_*, num_heads, head_dim]
58 59

  auto dims = q.dims();
C
Chitsing KUI 已提交
60 61 62
  int64_t total_q = dims[0];
  int64_t num_heads = dims[1];
  int64_t head_size = dims[2];
63

C
Chitsing KUI 已提交
64 65
  int64_t total_k = k.dims()[0];
  int64_t batch_size = cu_seqlens_q.numel() - 1;
66 67 68 69 70 71 72 73 74

  int num_splits = 0;  // 0 for an internal heuristic, which is optimal
  bool zero_tensors = false;

  std::vector<int64_t> seed_offset_vec;
  phi::TensorToVector<int64_t>(seed_offset, ctx, &seed_offset_vec);
  uint64_t seed = seed_offset_vec[0];
  uint64_t offset = seed_offset_vec[1];

C
Chitsing KUI 已提交
75
  int64_t seq_len_q = ((max_seqlen_q + 16 - 1) / 16) * 16;
76 77 78 79 80 81
  DenseTensor dsoftmax = Empty<float>(ctx, {batch_size, num_heads, seq_len_q});

  uint64_t workspace_size;

  // calculate workspace size before execution
  bool succ = phi::dynload::flash_attn_bwd(
C
Chitsing KUI 已提交
82 83 84
      q.data(),
      k.data(),
      v.data(),
85 86 87 88 89 90 91 92 93 94 95 96
      dq->data(),
      dk->data(),
      dv->data(),
      nullptr,  // for calculation workspace size
      dout.data(),
      cu_seqlens_q.data(),
      cu_seqlens_k.data(),
      total_q,
      total_k,
      batch_size,
      num_heads,
      head_size,
C
Chitsing KUI 已提交
97 98
      max_seqlen_q,
      max_seqlen_k,
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
      dropout,
      scale,
      zero_tensors,
      causal,
      is_bf16,
      num_splits,
      const_cast<float*>(softmax_lse.data<float>()),
      dsoftmax.data(),
      nullptr,
      &workspace_size,
      stream,
      seed,
      offset);

  if (!succ) {
    PADDLE_THROW(phi::errors::External(phi::dynload::flash_attn_error()));
  }

  DenseTensor workspace;
  if (workspace_size > 0) {
    workspace = Empty<float>(ctx, {int64_t(workspace_size / sizeof(float))});
  }

  succ = phi::dynload::flash_attn_bwd(
C
Chitsing KUI 已提交
123 124 125
      q.data(),
      k.data(),
      v.data(),
126 127 128 129 130 131 132 133 134 135 136 137
      dq->data(),
      dk->data(),
      dv->data(),
      out.data(),
      dout.data(),
      cu_seqlens_q.data(),
      cu_seqlens_k.data(),
      total_q,
      total_k,
      batch_size,
      num_heads,
      head_size,
C
Chitsing KUI 已提交
138 139
      max_seqlen_q,
      max_seqlen_k,
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
      dropout,
      scale,
      zero_tensors,
      causal,
      is_bf16,
      num_splits,
      const_cast<float*>(softmax_lse.data<float>()),
      dsoftmax.data(),
      workspace_size > 0 ? workspace.data() : nullptr,
      &workspace_size,
      stream,
      seed,
      offset);

  if (!succ) {
    PADDLE_THROW(phi::errors::External(phi::dynload::flash_attn_error()));
  }

#endif
}

C
Chitsing KUI 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
template <typename T, typename Context>
void FlashAttnGradKernel(const Context& ctx,
                         const DenseTensor& q,
                         const DenseTensor& k,
                         const DenseTensor& v,
                         const DenseTensor& out,
                         const DenseTensor& softmax_lse,
                         const DenseTensor& seed_offset,
                         const DenseTensor& dout,
                         float dropout,
                         bool causal,
                         DenseTensor* dq,
                         DenseTensor* dk,
                         DenseTensor* dv) {
#ifdef PADDLE_WITH_FLASHATTN
  // q,k,v [batch_size, seq_len, num_heads, head_dim]

  auto dims = q.dims();
  int64_t batch_size = dims[0];
  int64_t seq_len_q = dims[1];
  int64_t num_heads = dims[2];
  int64_t head_size = dims[3];

  int64_t seq_len_k = k.dims()[1];

  int64_t total_q = batch_size * seq_len_q;
  int64_t total_k = batch_size * seq_len_k;

  float scale = 1.0f / std::sqrt(head_size);

  DenseTensor q_t_s =
      Reshape<T, Context>(ctx, q, {total_q, num_heads, head_size});
  DenseTensor k_t_s =
      Reshape<T, Context>(ctx, k, {total_k, num_heads, head_size});
  DenseTensor v_t_s =
      Reshape<T, Context>(ctx, v, {total_k, num_heads, head_size});

  DenseTensor cu_seqlens_q;
  DenseTensor cu_seqlens_k;
  ArangeNullaryKernel<int32_t, Context>(
      ctx, 0, (batch_size + 1) * seq_len_q, seq_len_q, &cu_seqlens_q);
  ArangeNullaryKernel<int32_t, Context>(
      ctx, 0, (batch_size + 1) * seq_len_k, seq_len_k, &cu_seqlens_k);

  FlashAttnRawGradKernel<T, Context>(ctx,
                                     q_t_s,
                                     k_t_s,
                                     v_t_s,
                                     cu_seqlens_q,
                                     cu_seqlens_k,
                                     out,
                                     softmax_lse,
                                     seed_offset,
                                     dout,
                                     seq_len_q,
                                     seq_len_k,
                                     scale,
                                     dropout,
                                     causal,
                                     dq,
                                     dk,
                                     dv);

#endif
}

227 228
}  // namespace phi

C
Chitsing KUI 已提交
229 230 231 232 233 234 235 236 237
PD_REGISTER_KERNEL(flash_attn_raw_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::FlashAttnRawGradKernel,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
  kernel->InputAt(7).SetBackend(phi::Backend::CPU);  // seed_offset
}

238 239 240 241 242 243 244 245
PD_REGISTER_KERNEL(flash_attn_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::FlashAttnGradKernel,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {
  kernel->InputAt(5).SetBackend(phi::Backend::CPU);  // seed_offset
}