Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
fa8c8971
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fa8c8971
编写于
11月 20, 2019
作者:
L
liu zhengxi
提交者:
GitHub
11月 20, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add layer_norm op on Lite x86 platform (#2463)
上级
134c138f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
291 addition
and
0 deletion
+291
-0
lite/kernels/x86/CMakeLists.txt
lite/kernels/x86/CMakeLists.txt
+2
-0
lite/kernels/x86/layer_norm_compute.cc
lite/kernels/x86/layer_norm_compute.cc
+29
-0
lite/kernels/x86/layer_norm_compute.h
lite/kernels/x86/layer_norm_compute.h
+91
-0
lite/kernels/x86/layer_norm_compute_test.cc
lite/kernels/x86/layer_norm_compute_test.cc
+169
-0
未找到文件。
lite/kernels/x86/CMakeLists.txt
浏览文件 @
fa8c8971
...
...
@@ -19,6 +19,7 @@ add_kernel(pool_compute_x86 X86 basic SRCS pool_compute.cc DEPS ${lite_kernel_de
add_kernel
(
stack_compute_x86 X86 basic SRCS stack_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
dropout_compute_x86 X86 basic SRCS dropout_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
transpose_compute_x86 X86 basic SRCS transpose_compute.cc DEPS
${
lite_kernel_deps
}
math_function
)
add_kernel
(
layer_norm_compute_x86 X86 basic SRCS layer_norm_compute.cc DEPS
${
lite_kernel_deps
}
jit_kernel_helper
)
# add_kernel(fc_compute_x86 X86 basic SRCS fc_compute.cc DEPS ${lite_kernel_deps})
# lite_cc_library(batch_norm_compute_x86 SRCS batch_norm_compute.cc DEPS ${lite_kernel_deps})
# lite_cc_library(uniform_random_compute_x86 SRCS uniform_random_compute.cc DEPS ${lite_kernel_deps} )
...
...
@@ -83,6 +84,7 @@ lite_cc_test(test_gru_compute_x86 SRCS gru_compute_test.cc DEPS gru_compute_x86)
lite_cc_test
(
test_matmul_compute_x86 SRCS matmul_compute_test.cc DEPS matmul_compute_x86
)
lite_cc_test
(
test_cast_compute_x86 SRCS cast_compute_test.cc DEPS cast_compute_x86
)
lite_cc_test
(
test_pool2d_compute_x86 SRCS pool_compute_test.cc DEPS pool_compute_x86
)
lite_cc_test
(
test_layer_norm_compute_x86 SRCS layer_norm_compute_test.cc DEPS layer_norm_compute_x86
)
lite_cc_test
(
test_dropout_compute_x86 SRCS dropout_compute_test.cc DEPS dropout_compute_x86
)
lite_cc_test
(
test_transpose_compute_x86 SRCS transpose_compute_test.cc DEPS transpose_compute_x86
)
lite_cc_test
(
test_search_fc_compute_x86 SRCS search_fc_compute_test.cc DEPS search_fc_compute_x86
)
...
...
lite/kernels/x86/layer_norm_compute.cc
0 → 100644
浏览文件 @
fa8c8971
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/layer_norm_compute.h"
REGISTER_LITE_KERNEL
(
layer_norm
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
LayerNormCompute
<
float
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Scale"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Mean"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Variance"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
lite/kernels/x86/layer_norm_compute.h
0 → 100644
浏览文件 @
fa8c8971
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/backends/x86/jit/helper.h"
#include "lite/backends/x86/jit/kernel_base.h"
#include "lite/backends/x86/jit/kernels.h"
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/operators/layer_norm_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
class
LayerNormCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
LayerNormParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
float
epsilon
=
param
.
epsilon
;
auto
Scale
=
param
.
Scale
;
auto
Bias
=
param
.
Bias
;
auto
x
=
param
.
X
;
auto
y
=
param
.
Y
;
auto
Mean
=
param
.
Mean
;
auto
Var
=
param
.
Variance
;
auto
begin_norm_axis
=
param
.
begin_norm_axis
;
auto
x_dims
=
x
->
dims
();
y
->
mutable_data
<
T
>
();
Mean
->
mutable_data
<
T
>
();
Var
->
mutable_data
<
T
>
();
auto
matrix_dim
=
x_dims
.
Flatten2D
(
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
lite
::
DDim
matrix_shape
({
left
,
right
});
lite
::
Tensor
in
;
in
.
ShareDataWith
(
*
x
);
in
.
Resize
(
matrix_shape
);
lite
::
Tensor
out
;
out
.
ShareDataWith
(
*
y
);
out
.
Resize
(
matrix_shape
);
PADDLE_ENFORCE_EQ
(
Mean
->
numel
(),
left
);
PADDLE_ENFORCE_EQ
(
Var
->
numel
(),
left
);
PADDLE_ENFORCE_EQ
(
Scale
->
numel
(),
right
);
PADDLE_ENFORCE_EQ
(
Bias
->
numel
(),
right
);
auto
ker
=
paddle
::
lite
::
jit
::
KernelFuncs
<
jit
::
LayerNormTuple
<
T
>
,
lite
::
fluid
::
CPUPlace
>::
Cache
()
.
At
(
right
);
ker
(
in
.
mutable_data
<
T
>
(),
out
.
mutable_data
<
T
>
(),
Mean
->
mutable_data
<
T
>
(),
Var
->
mutable_data
<
T
>
(),
Scale
->
data
<
T
>
(),
Bias
->
data
<
T
>
(),
static_cast
<
int
>
(
left
),
static_cast
<
const
float
>
(
epsilon
),
right
);
}
virtual
~
LayerNormCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/x86/layer_norm_compute_test.cc
0 → 100644
浏览文件 @
fa8c8971
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/layer_norm_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>
#include "lite/backends/x86/jit/helper.h"
#include "lite/backends/x86/jit/kernel_base.h"
#include "lite/backends/x86/jit/kernels.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
std
::
vector
<
float
>
ref
(
lite
::
Tensor
*
x
,
lite
::
Tensor
*
Scale
,
lite
::
Tensor
*
Bias
,
lite
::
Tensor
*
y
,
lite
::
Tensor
*
Mean
,
lite
::
Tensor
*
Var
,
int
begin_norm_axis
,
float
epsilon
)
{
auto
x_dims
=
x
->
dims
();
y
->
mutable_data
<
float
>
();
Mean
->
mutable_data
<
float
>
();
Var
->
mutable_data
<
float
>
();
auto
matrix_dim
=
x_dims
.
Flatten2D
(
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
lite
::
DDim
matrix_shape
({
left
,
right
});
x
->
Resize
(
matrix_shape
);
Tensor
out
;
out
.
ShareDataWith
(
*
y
);
out
.
Resize
(
matrix_shape
);
auto
ker
=
paddle
::
lite
::
jit
::
KernelFuncs
<
jit
::
LayerNormTuple
<
float
>
,
lite
::
fluid
::
CPUPlace
>::
Cache
()
.
At
(
right
);
ker
(
x
->
mutable_data
<
float
>
(),
out
.
mutable_data
<
float
>
(),
Mean
->
mutable_data
<
float
>
(),
Var
->
mutable_data
<
float
>
(),
Scale
->
data
<
float
>
(),
Bias
->
data
<
float
>
(),
static_cast
<
int
>
(
left
),
static_cast
<
const
float
>
(
epsilon
),
right
);
std
::
vector
<
float
>
ref_data
;
auto
result
=
out
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
y
->
dims
().
production
();
++
i
)
{
ref_data
.
emplace_back
(
result
[
i
]);
}
return
ref_data
;
}
// layer_norm
TEST
(
layer_norm_x86
,
retrive_op
)
{
auto
layer_norm
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"layer_norm"
);
ASSERT_FALSE
(
layer_norm
.
empty
());
ASSERT_TRUE
(
layer_norm
.
front
());
}
TEST
(
layer_norm_x86
,
init
)
{
lite
::
kernels
::
x86
::
LayerNormCompute
<
float
>
layer_norm
;
ASSERT_EQ
(
layer_norm
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
layer_norm
.
target
(),
TARGET
(
kX86
));
}
TEST
(
layer_norm_x86
,
run_test
)
{
lite
::
Tensor
x
;
lite
::
Tensor
Scale
;
lite
::
Tensor
Bias
;
lite
::
Tensor
out
;
lite
::
Tensor
Mean
;
lite
::
Tensor
Var
;
std
::
vector
<
int64_t
>
x_shape
({
1
,
2
,
3
,
1
});
x
.
Resize
(
lite
::
DDim
(
x_shape
));
std
::
vector
<
int64_t
>
out_shape
({
1
,
2
,
3
,
1
});
out
.
Resize
(
lite
::
DDim
(
out_shape
));
int
begin_norm_axis
=
0
;
float
epsilon
=
1e-5
;
int
pre
=
1
;
int
post
=
1
;
for
(
int
i
=
0
;
i
<
begin_norm_axis
;
++
i
)
{
pre
*=
x_shape
[
i
];
}
for
(
int
i
=
begin_norm_axis
;
i
<
x_shape
.
size
();
++
i
)
{
post
*=
x_shape
[
i
];
}
std
::
vector
<
int64_t
>
scale_shape
({
post
});
Scale
.
Resize
(
scale_shape
);
std
::
vector
<
int64_t
>
bias_shape
({
post
});
Bias
.
Resize
(
bias_shape
);
auto
x_data
=
x
.
mutable_data
<
float
>
();
auto
scale_data
=
Scale
.
mutable_data
<
float
>
();
auto
bias_data
=
Bias
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
auto
mean_data
=
Mean
.
mutable_data
<
float
>
();
auto
var_data
=
Var
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
production
();
++
i
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
for
(
int64_t
i
=
0
;
i
<
Scale
.
dims
().
production
();
++
i
)
{
scale_data
[
i
]
=
1.5
;
}
for
(
int64_t
i
=
0
;
i
<
Bias
.
dims
().
production
();
++
i
)
{
bias_data
[
i
]
=
0.25
;
}
LayerNormCompute
<
float
>
layer_norm
;
operators
::
LayerNormParam
param
;
param
.
X
=
&
x
;
param
.
Y
=
&
out
;
param
.
Scale
=
&
Scale
;
param
.
Bias
=
&
Bias
;
param
.
Mean
=
&
Mean
;
param
.
Variance
=
&
Var
;
param
.
begin_norm_axis
=
begin_norm_axis
;
param
.
epsilon
=
epsilon
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
X86Context
>
();
layer_norm
.
SetContext
(
std
::
move
(
ctx
));
layer_norm
.
SetParam
(
param
);
layer_norm
.
Run
();
std
::
vector
<
float
>
ref_data
=
ref
(
&
x
,
&
Scale
,
&
Bias
,
&
out
,
&
Mean
,
&
Var
,
begin_norm_axis
,
epsilon
);
for
(
int
j
=
0
;
j
<
out
.
dims
().
production
();
++
j
)
{
EXPECT_NEAR
(
out_data
[
j
],
ref_data
[
j
],
1e-5
);
// LOG(INFO) << out_data[j];
}
LOG
(
INFO
)
<<
*
mean_data
;
LOG
(
INFO
)
<<
*
var_data
;
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
layer_norm
,
kX86
,
kFloat
,
kNCHW
,
def
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录