diff --git a/lite/kernels/x86/CMakeLists.txt b/lite/kernels/x86/CMakeLists.txt index d40d4ac575a2284b252bcae138d78dfa4769bffc..ed2ac6637e1496a7e0aa968638d9bd0631f7f33d 100644 --- a/lite/kernels/x86/CMakeLists.txt +++ b/lite/kernels/x86/CMakeLists.txt @@ -19,6 +19,7 @@ add_kernel(pool_compute_x86 X86 basic SRCS pool_compute.cc DEPS ${lite_kernel_de add_kernel(stack_compute_x86 X86 basic SRCS stack_compute.cc DEPS ${lite_kernel_deps}) add_kernel(dropout_compute_x86 X86 basic SRCS dropout_compute.cc DEPS ${lite_kernel_deps}) add_kernel(transpose_compute_x86 X86 basic SRCS transpose_compute.cc DEPS ${lite_kernel_deps} math_function) +add_kernel(layer_norm_compute_x86 X86 basic SRCS layer_norm_compute.cc DEPS ${lite_kernel_deps} jit_kernel_helper) # add_kernel(fc_compute_x86 X86 basic SRCS fc_compute.cc DEPS ${lite_kernel_deps}) # lite_cc_library(batch_norm_compute_x86 SRCS batch_norm_compute.cc DEPS ${lite_kernel_deps}) # lite_cc_library(uniform_random_compute_x86 SRCS uniform_random_compute.cc DEPS ${lite_kernel_deps} ) @@ -83,6 +84,7 @@ lite_cc_test(test_gru_compute_x86 SRCS gru_compute_test.cc DEPS gru_compute_x86) lite_cc_test(test_matmul_compute_x86 SRCS matmul_compute_test.cc DEPS matmul_compute_x86) lite_cc_test(test_cast_compute_x86 SRCS cast_compute_test.cc DEPS cast_compute_x86) lite_cc_test(test_pool2d_compute_x86 SRCS pool_compute_test.cc DEPS pool_compute_x86) +lite_cc_test(test_layer_norm_compute_x86 SRCS layer_norm_compute_test.cc DEPS layer_norm_compute_x86) lite_cc_test(test_dropout_compute_x86 SRCS dropout_compute_test.cc DEPS dropout_compute_x86) lite_cc_test(test_transpose_compute_x86 SRCS transpose_compute_test.cc DEPS transpose_compute_x86) lite_cc_test(test_search_fc_compute_x86 SRCS search_fc_compute_test.cc DEPS search_fc_compute_x86) diff --git a/lite/kernels/x86/layer_norm_compute.cc b/lite/kernels/x86/layer_norm_compute.cc new file mode 100644 index 0000000000000000000000000000000000000000..4854a69a1d5f38bff102d984f990aea4ad723439 --- /dev/null +++ b/lite/kernels/x86/layer_norm_compute.cc @@ -0,0 +1,29 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "lite/kernels/x86/layer_norm_compute.h" + +REGISTER_LITE_KERNEL(layer_norm, + kX86, + kFloat, + kNCHW, + paddle::lite::kernels::x86::LayerNormCompute, + def) + .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))}) + .BindInput("Scale", {LiteType::GetTensorTy(TARGET(kX86))}) + .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kX86))}) + .BindOutput("Y", {LiteType::GetTensorTy(TARGET(kX86))}) + .BindOutput("Mean", {LiteType::GetTensorTy(TARGET(kX86))}) + .BindOutput("Variance", {LiteType::GetTensorTy(TARGET(kX86))}) + .Finalize(); diff --git a/lite/kernels/x86/layer_norm_compute.h b/lite/kernels/x86/layer_norm_compute.h new file mode 100644 index 0000000000000000000000000000000000000000..bbbdb91debfd7d7b046a3eb18a535462c69e358c --- /dev/null +++ b/lite/kernels/x86/layer_norm_compute.h @@ -0,0 +1,91 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "lite/backends/x86/jit/helper.h" +#include "lite/backends/x86/jit/kernel_base.h" +#include "lite/backends/x86/jit/kernels.h" +#include "lite/core/kernel.h" +#include "lite/core/op_lite.h" +#include "lite/core/op_registry.h" +#include "lite/core/type_system.h" +#include "lite/operators/layer_norm_op.h" + +namespace paddle { +namespace lite { +namespace kernels { +namespace x86 { + +template +class LayerNormCompute : public KernelLite { + public: + using param_t = operators::LayerNormParam; + + void Run() override { + auto ¶m = *param_.get_mutable(); + float epsilon = param.epsilon; + auto Scale = param.Scale; + auto Bias = param.Bias; + auto x = param.X; + + auto y = param.Y; + auto Mean = param.Mean; + auto Var = param.Variance; + auto begin_norm_axis = param.begin_norm_axis; + + auto x_dims = x->dims(); + + y->mutable_data(); + Mean->mutable_data(); + Var->mutable_data(); + + auto matrix_dim = x_dims.Flatten2D(begin_norm_axis); + int left = static_cast(matrix_dim[0]); + int right = static_cast(matrix_dim[1]); + lite::DDim matrix_shape({left, right}); + + lite::Tensor in; + in.ShareDataWith(*x); + in.Resize(matrix_shape); + lite::Tensor out; + out.ShareDataWith(*y); + out.Resize(matrix_shape); + + PADDLE_ENFORCE_EQ(Mean->numel(), left); + PADDLE_ENFORCE_EQ(Var->numel(), left); + PADDLE_ENFORCE_EQ(Scale->numel(), right); + PADDLE_ENFORCE_EQ(Bias->numel(), right); + + auto ker = paddle::lite::jit::KernelFuncs, + lite::fluid::CPUPlace>::Cache() + .At(right); + ker(in.mutable_data(), + out.mutable_data(), + Mean->mutable_data(), + Var->mutable_data(), + Scale->data(), + Bias->data(), + static_cast(left), + static_cast(epsilon), + right); + } + + virtual ~LayerNormCompute() = default; +}; + +} // namespace x86 +} // namespace kernels +} // namespace lite +} // namespace paddle diff --git a/lite/kernels/x86/layer_norm_compute_test.cc b/lite/kernels/x86/layer_norm_compute_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..fbac39505204b3799f6c5274f80690196e83a725 --- /dev/null +++ b/lite/kernels/x86/layer_norm_compute_test.cc @@ -0,0 +1,169 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "lite/kernels/x86/layer_norm_compute.h" +#include +#include +#include +#include +#include "lite/backends/x86/jit/helper.h" +#include "lite/backends/x86/jit/kernel_base.h" +#include "lite/backends/x86/jit/kernels.h" +#include "lite/core/op_registry.h" + +namespace paddle { +namespace lite { +namespace kernels { +namespace x86 { + +std::vector ref(lite::Tensor* x, + lite::Tensor* Scale, + lite::Tensor* Bias, + lite::Tensor* y, + lite::Tensor* Mean, + lite::Tensor* Var, + int begin_norm_axis, + float epsilon) { + auto x_dims = x->dims(); + + y->mutable_data(); + Mean->mutable_data(); + Var->mutable_data(); + + auto matrix_dim = x_dims.Flatten2D(begin_norm_axis); + int left = static_cast(matrix_dim[0]); + int right = static_cast(matrix_dim[1]); + lite::DDim matrix_shape({left, right}); + + x->Resize(matrix_shape); + Tensor out; + out.ShareDataWith(*y); + out.Resize(matrix_shape); + + auto ker = paddle::lite::jit::KernelFuncs, + lite::fluid::CPUPlace>::Cache() + .At(right); + ker(x->mutable_data(), + out.mutable_data(), + Mean->mutable_data(), + Var->mutable_data(), + Scale->data(), + Bias->data(), + static_cast(left), + static_cast(epsilon), + right); + + std::vector ref_data; + auto result = out.mutable_data(); + for (int i = 0; i < y->dims().production(); ++i) { + ref_data.emplace_back(result[i]); + } + return ref_data; +} + +// layer_norm +TEST(layer_norm_x86, retrive_op) { + auto layer_norm = + KernelRegistry::Global().Create( + "layer_norm"); + ASSERT_FALSE(layer_norm.empty()); + ASSERT_TRUE(layer_norm.front()); +} + +TEST(layer_norm_x86, init) { + lite::kernels::x86::LayerNormCompute layer_norm; + ASSERT_EQ(layer_norm.precision(), PRECISION(kFloat)); + ASSERT_EQ(layer_norm.target(), TARGET(kX86)); +} + +TEST(layer_norm_x86, run_test) { + lite::Tensor x; + lite::Tensor Scale; + lite::Tensor Bias; + + lite::Tensor out; + lite::Tensor Mean; + lite::Tensor Var; + + std::vector x_shape({1, 2, 3, 1}); + x.Resize(lite::DDim(x_shape)); + std::vector out_shape({1, 2, 3, 1}); + out.Resize(lite::DDim(out_shape)); + + int begin_norm_axis = 0; + float epsilon = 1e-5; + int pre = 1; + int post = 1; + for (int i = 0; i < begin_norm_axis; ++i) { + pre *= x_shape[i]; + } + for (int i = begin_norm_axis; i < x_shape.size(); ++i) { + post *= x_shape[i]; + } + std::vector scale_shape({post}); + Scale.Resize(scale_shape); + std::vector bias_shape({post}); + Bias.Resize(bias_shape); + + auto x_data = x.mutable_data(); + auto scale_data = Scale.mutable_data(); + auto bias_data = Bias.mutable_data(); + auto out_data = out.mutable_data(); + auto mean_data = Mean.mutable_data(); + auto var_data = Var.mutable_data(); + + for (int64_t i = 0; i < x.dims().production(); ++i) { + x_data[i] = static_cast(i); + } + for (int64_t i = 0; i < Scale.dims().production(); ++i) { + scale_data[i] = 1.5; + } + for (int64_t i = 0; i < Bias.dims().production(); ++i) { + bias_data[i] = 0.25; + } + + LayerNormCompute layer_norm; + operators::LayerNormParam param; + + param.X = &x; + param.Y = &out; + param.Scale = &Scale; + param.Bias = &Bias; + param.Mean = &Mean; + param.Variance = &Var; + param.begin_norm_axis = begin_norm_axis; + param.epsilon = epsilon; + + std::unique_ptr ctx(new KernelContext); + ctx->As(); + layer_norm.SetContext(std::move(ctx)); + layer_norm.SetParam(param); + layer_norm.Run(); + + std::vector ref_data = + ref(&x, &Scale, &Bias, &out, &Mean, &Var, begin_norm_axis, epsilon); + for (int j = 0; j < out.dims().production(); ++j) { + EXPECT_NEAR(out_data[j], ref_data[j], 1e-5); + // LOG(INFO) << out_data[j]; + } + LOG(INFO) << *mean_data; + LOG(INFO) << *var_data; +} + +} // namespace x86 +} // namespace kernels +} // namespace lite +} // namespace paddle + +USE_LITE_KERNEL(layer_norm, kX86, kFloat, kNCHW, def);