Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
f0a6ddfd
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
337
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f0a6ddfd
编写于
5月 12, 2020
作者:
J
jackzhang235
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into Batch_Size
上级
dda23220
cce54cb6
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
559 addition
and
8 deletion
+559
-8
.github/workflows/github-CI.yml
.github/workflows/github-CI.yml
+6
-0
lite/core/mir/elimination/identity_scale_eliminate_pass.cc
lite/core/mir/elimination/identity_scale_eliminate_pass.cc
+3
-1
lite/kernels/mlu/bridges/CMakeLists.txt
lite/kernels/mlu/bridges/CMakeLists.txt
+6
-0
lite/kernels/mlu/bridges/act_op.cc
lite/kernels/mlu/bridges/act_op.cc
+3
-0
lite/kernels/mlu/bridges/act_op_test.cc
lite/kernels/mlu/bridges/act_op_test.cc
+5
-1
lite/kernels/mlu/bridges/paddle_use_bridges.h
lite/kernels/mlu/bridges/paddle_use_bridges.h
+5
-0
lite/kernels/mlu/bridges/split_op.cc
lite/kernels/mlu/bridges/split_op.cc
+80
-0
lite/kernels/mlu/bridges/split_op_test.cc
lite/kernels/mlu/bridges/split_op_test.cc
+199
-0
lite/kernels/mlu/bridges/squeeze_op.cc
lite/kernels/mlu/bridges/squeeze_op.cc
+100
-0
lite/kernels/mlu/bridges/squeeze_op_test.cc
lite/kernels/mlu/bridges/squeeze_op_test.cc
+116
-0
lite/kernels/mlu/bridges/utility.h
lite/kernels/mlu/bridges/utility.h
+36
-6
未找到文件。
.github/workflows/github-CI.yml
浏览文件 @
f0a6ddfd
...
@@ -41,6 +41,12 @@ jobs:
...
@@ -41,6 +41,12 @@ jobs:
run
:
./build.lite.mlu/lite/kernels/mlu/bridges/test_softmax_converter_mlu
run
:
./build.lite.mlu/lite/kernels/mlu/bridges/test_softmax_converter_mlu
-
name
:
test_transpose_converter_mlu
-
name
:
test_transpose_converter_mlu
run
:
./build.lite.mlu/lite/kernels/mlu/bridges/test_transpose_converter_mlu
run
:
./build.lite.mlu/lite/kernels/mlu/bridges/test_transpose_converter_mlu
-
name
:
test_slice_converter_mlu
run
:
./build.lite.mlu/lite/kernels/mlu/bridges/test_slice_converter_mlu
-
name
:
test_argmax_converter_mlu
run
:
./build.lite.mlu/lite/kernels/mlu/bridges/test_argmax_converter_mlu
-
name
:
test_split_converter_mlu
run
:
./build.lite.mlu/lite/kernels/mlu/bridges/test_split_converter_mlu
-
name
:
test_classification
-
name
:
test_classification
run
:
|
run
:
|
cd ..
cd ..
...
...
lite/core/mir/elimination/identity_scale_eliminate_pass.cc
浏览文件 @
f0a6ddfd
...
@@ -26,7 +26,9 @@ class Eliminator : public FuseBase {
...
@@ -26,7 +26,9 @@ class Eliminator : public FuseBase {
public:
public:
void
BuildPattern
()
override
{
void
BuildPattern
()
override
{
// the previous op's output need updat
// the previous op's output need updat
auto
*
pre_op
=
OpNode
(
"preop"
)
->
assert_is_not_op_type
(
"conditional_block"
);
auto
*
pre_op
=
OpNode
(
"preop"
)
->
assert_is_not_op_type
(
"conditional_block"
)
->
assert_is_not_op_type
(
"scale"
);
// TODO(Superjomn) check has only one output
// TODO(Superjomn) check has only one output
auto
*
x
=
VarNode
(
"x"
)
->
assert_is_op_input
(
"scale"
,
"X"
);
auto
*
x
=
VarNode
(
"x"
)
->
assert_is_op_input
(
"scale"
,
"X"
);
auto
*
scale_op
=
OpNode
(
"scale"
,
"scale"
)
auto
*
scale_op
=
OpNode
(
"scale"
,
"scale"
)
...
...
lite/kernels/mlu/bridges/CMakeLists.txt
浏览文件 @
f0a6ddfd
...
@@ -21,7 +21,9 @@ lite_cc_library(subgraph_bridge_concat_op_mlu SRCS concat_op.cc DEPS ${subgraph_
...
@@ -21,7 +21,9 @@ lite_cc_library(subgraph_bridge_concat_op_mlu SRCS concat_op.cc DEPS ${subgraph_
lite_cc_library
(
subgraph_bridge_transpose_op_mlu SRCS transpose_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_transpose_op_mlu SRCS transpose_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_dropout_op_mlu SRCS dropout_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_dropout_op_mlu SRCS dropout_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_slice_op_mlu SRCS slice_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_slice_op_mlu SRCS slice_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_split_op_mlu SRCS split_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_argmax_op_mlu SRCS argmax_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_argmax_op_mlu SRCS argmax_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_squeeze_op_mlu SRCS squeeze_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
set
(
mlu_subgraph_bridges
set
(
mlu_subgraph_bridges
subgraph_bridge_registry
subgraph_bridge_registry
subgraph_bridge_utility_mlu
subgraph_bridge_utility_mlu
...
@@ -39,7 +41,9 @@ set(mlu_subgraph_bridges
...
@@ -39,7 +41,9 @@ set(mlu_subgraph_bridges
subgraph_bridge_concat_op_mlu
subgraph_bridge_concat_op_mlu
subgraph_bridge_dropout_op_mlu
subgraph_bridge_dropout_op_mlu
subgraph_bridge_slice_op_mlu
subgraph_bridge_slice_op_mlu
subgraph_bridge_split_op_mlu
subgraph_bridge_argmax_op_mlu
subgraph_bridge_argmax_op_mlu
subgraph_bridge_squeeze_op_mlu
CACHE INTERNAL
"mlu_subgraph_bridges"
)
CACHE INTERNAL
"mlu_subgraph_bridges"
)
...
@@ -62,7 +66,9 @@ lite_cc_test(test_concat_converter_mlu SRCS concat_op_test.cc DEPS scope optimiz
...
@@ -62,7 +66,9 @@ lite_cc_test(test_concat_converter_mlu SRCS concat_op_test.cc DEPS scope optimiz
lite_cc_test
(
test_transpose_converter_mlu SRCS transpose_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_transpose_converter_mlu SRCS transpose_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_dropout_converter_mlu SRCS dropout_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_dropout_converter_mlu SRCS dropout_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_slice_converter_mlu SRCS slice_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_slice_converter_mlu SRCS slice_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_split_converter_mlu SRCS split_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_argmax_converter_mlu SRCS argmax_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_argmax_converter_mlu SRCS argmax_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_squeeze_converter_mlu SRCS squeeze_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
if
(
LITE_BUILD_EXTRA
)
if
(
LITE_BUILD_EXTRA
)
lite_cc_test
(
test_lrn_converter_mlu SRCS lrn_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_lrn_converter_mlu SRCS lrn_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
endif
()
endif
()
...
...
lite/kernels/mlu/bridges/act_op.cc
浏览文件 @
f0a6ddfd
...
@@ -73,6 +73,9 @@ REGISTER_SUBGRAPH_BRIDGE(sigmoid,
...
@@ -73,6 +73,9 @@ REGISTER_SUBGRAPH_BRIDGE(sigmoid,
kMLU
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
ActConverter
);
paddle
::
lite
::
subgraph
::
mlu
::
ActConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
relu
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
ActConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
relu
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
ActConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
relu6
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
ActConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
tanh
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
ActConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
tanh
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
ActConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
leaky_relu
,
REGISTER_SUBGRAPH_BRIDGE
(
leaky_relu
,
kMLU
,
kMLU
,
...
...
lite/kernels/mlu/bridges/act_op_test.cc
浏览文件 @
f0a6ddfd
...
@@ -13,7 +13,9 @@
...
@@ -13,7 +13,9 @@
// limitations under the License.
// limitations under the License.
#include <gtest/gtest.h>
#include <gtest/gtest.h>
#include <random>
#include <random>
#include "lite/core/op_lite.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
...
@@ -134,7 +136,8 @@ void test_act(std::vector<int64_t> x_shape, std::string op_type) {
...
@@ -134,7 +136,8 @@ void test_act(std::vector<int64_t> x_shape, std::string op_type) {
TEST
(
MLUBridges
,
activation
)
{
TEST
(
MLUBridges
,
activation
)
{
std
::
vector
<
std
::
vector
<
int64_t
>>
shapes
{{
1
},
{
2
,
3
},
{
1
,
2
,
3
,
4
}};
std
::
vector
<
std
::
vector
<
int64_t
>>
shapes
{{
1
},
{
2
,
3
},
{
1
,
2
,
3
,
4
}};
std
::
vector
<
std
::
string
>
types
{
"sigmoid"
,
"relu"
,
"tanh"
,
"leaky_relu"
};
std
::
vector
<
std
::
string
>
types
{
"sigmoid"
,
"relu"
,
"relu6"
,
"tanh"
,
"leaky_relu"
};
for
(
auto
x_shape
:
shapes
)
{
for
(
auto
x_shape
:
shapes
)
{
for
(
auto
op_type
:
types
)
{
for
(
auto
op_type
:
types
)
{
test_act
(
x_shape
,
op_type
);
test_act
(
x_shape
,
op_type
);
...
@@ -149,5 +152,6 @@ TEST(MLUBridges, activation) {
...
@@ -149,5 +152,6 @@ TEST(MLUBridges, activation) {
USE_SUBGRAPH_BRIDGE
(
sigmoid
,
kMLU
)
USE_SUBGRAPH_BRIDGE
(
sigmoid
,
kMLU
)
USE_SUBGRAPH_BRIDGE
(
relu
,
kMLU
)
USE_SUBGRAPH_BRIDGE
(
relu
,
kMLU
)
USE_SUBGRAPH_BRIDGE
(
relu6
,
kMLU
)
USE_SUBGRAPH_BRIDGE
(
tanh
,
kMLU
)
USE_SUBGRAPH_BRIDGE
(
tanh
,
kMLU
)
USE_SUBGRAPH_BRIDGE
(
leaky_relu
,
kMLU
)
USE_SUBGRAPH_BRIDGE
(
leaky_relu
,
kMLU
)
lite/kernels/mlu/bridges/paddle_use_bridges.h
浏览文件 @
f0a6ddfd
...
@@ -15,6 +15,7 @@
...
@@ -15,6 +15,7 @@
#pragma once
#pragma once
USE_SUBGRAPH_BRIDGE
(
relu
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
relu
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
relu6
,
kMLU
)
USE_SUBGRAPH_BRIDGE
(
conv2d
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
conv2d
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
depthwise_conv2d
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
depthwise_conv2d
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
elementwise_add
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
elementwise_add
,
kMLU
);
...
@@ -32,6 +33,10 @@ USE_SUBGRAPH_BRIDGE(sigmoid, kMLU);
...
@@ -32,6 +33,10 @@ USE_SUBGRAPH_BRIDGE(sigmoid, kMLU);
USE_SUBGRAPH_BRIDGE
(
elementwise_mul
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
elementwise_mul
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
dropout
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
dropout
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
argmax
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
argmax
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
split
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
slice
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
squeeze
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
squeeze2
,
kMLU
);
#ifdef LITE_BUILD_EXTRA
#ifdef LITE_BUILD_EXTRA
USE_SUBGRAPH_BRIDGE
(
lrn
,
kMLU
)
USE_SUBGRAPH_BRIDGE
(
lrn
,
kMLU
)
#endif
#endif
lite/kernels/mlu/bridges/split_op.cc
0 → 100644
浏览文件 @
f0a6ddfd
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
SplitConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
x_dims
=
x
->
dims
().
Vectorize
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
);
auto
param_axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
auto
num
=
op_info
->
GetAttr
<
int
>
(
"num"
);
auto
sections
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"sections"
);
int64_t
sections_num
=
static_cast
<
int64_t
>
(
sections
.
size
());
auto
output_num
=
num
>
0
?
num
:
sections_num
;
std
::
vector
<
cnmlTensor_t
>
output_tensor
;
for
(
auto
out_name
:
out_var_name
)
{
auto
out
=
scope
->
FindVar
(
out_name
)
->
GetMutable
<
Tensor
>
();
auto
out_dims
=
out
->
dims
().
Vectorize
();
auto
out_tensor
=
graph
->
AddNode
(
out_name
,
out_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
output_tensor
.
push_back
(
out_tensor
->
mlu_tensor
());
}
auto
dims
=
x_dims
.
size
();
int
axis
=
(
param_axis
<
0
)
?
(
param_axis
+
dims
)
:
param_axis
;
CHECK_LE
(
axis
,
4
)
<<
"Unsupport dims in mlu concat"
;
int
nchw_to_nhwc_axis_map
[
4
]
=
{
0
,
3
,
1
,
2
};
int
nhwc_axis
=
nchw_to_nhwc_axis_map
[
axis
];
CHECK
(
graph
->
HasNode
(
x_var_name
));
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
cnmlBaseOp_t
split_op
;
cnmlTensor_t
inputs
=
input_tensor
->
mlu_tensor
();
CNML_CALL
(
cnmlCreateNdSplitOp
(
&
split_op
,
nhwc_axis
,
&
inputs
,
1
,
output_tensor
.
data
(),
output_num
));
graph
->
FuseOp
(
split_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
split_op
));
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
split
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
SplitConverter
);
lite/kernels/mlu/bridges/split_op_test.cc
0 → 100644
浏览文件 @
f0a6ddfd
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/split_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
template
<
typename
dtype
>
void
split_ref
(
const
std
::
shared_ptr
<
operators
::
SplitOp
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindVar
(
op_info
->
Input
(
"X"
).
front
())
->
GetMutable
<
Tensor
>
();
int
num
=
op_info
->
GetAttr
<
int
>
(
"num"
);
int
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
std
::
vector
<
int
>
sections
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"sections"
);
std
::
vector
<
lite
::
Tensor
*>
output_vec
;
auto
output
=
op_info
->
Output
(
"Out"
);
for
(
auto
out_var
:
output
)
{
output_vec
.
push_back
(
scope
->
Var
(
out_var
)
->
GetMutable
<
Tensor
>
());
}
auto
in_dims
=
x
->
dims
();
auto
rank
=
in_dims
.
size
();
int
outs_number
=
output_vec
.
size
();
std
::
vector
<
lite
::
DDimLite
>
outs_dims
;
outs_dims
.
reserve
(
outs_number
);
if
(
axis
<
0
)
{
axis
+=
rank
;
}
if
(
num
>
0
)
{
int
out_axis_dim
=
in_dims
[
axis
]
/
num
;
for
(
int
i
=
0
;
i
<
outs_number
;
++
i
)
{
auto
dim
=
in_dims
;
dim
[
axis
]
=
out_axis_dim
;
outs_dims
.
push_back
(
dim
);
}
}
else
if
(
sections
.
size
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
outs_number
;
++
i
)
{
auto
dim
=
in_dims
;
dim
[
axis
]
=
sections
[
i
];
outs_dims
.
push_back
(
dim
);
}
}
for
(
int
j
=
0
;
j
<
outs_dims
.
size
();
++
j
)
{
output_vec
[
j
]
->
Resize
(
outs_dims
[
j
]);
}
const
dtype
*
din
=
x
->
mutable_data
<
const
dtype
>
();
std
::
vector
<
int
>
in_strides
(
in_dims
.
size
());
in_strides
[
in_dims
.
size
()
-
1
]
=
in_dims
[
in_dims
.
size
()
-
1
];
for
(
int
i
=
in_dims
.
size
()
-
2
;
i
>=
0
;
--
i
)
{
in_strides
[
i
]
=
in_strides
[
i
+
1
]
*
in_dims
[
i
];
}
int
input_offset
=
0
;
for
(
auto
out
:
output_vec
)
{
auto
out_dim
=
out
->
dims
();
std
::
vector
<
int
>
out_strides
(
out_dim
.
size
());
out_strides
[
out_dim
.
size
()
-
1
]
=
out_dim
[
out_dim
.
size
()
-
1
];
for
(
int
i
=
out_dim
.
size
()
-
2
;
i
>=
0
;
--
i
)
{
out_strides
[
i
]
=
out_strides
[
i
+
1
]
*
out_dim
[
i
];
}
dtype
*
out_data
=
out
->
mutable_data
<
dtype
>
();
int
before
=
out_strides
[
0
]
/
out_strides
[
axis
];
int
in_after
=
in_strides
[
axis
];
int
out_after
=
out_strides
[
axis
];
for
(
int
i
=
0
;
i
<
before
;
++
i
)
{
std
::
memcpy
(
out_data
+
i
*
out_after
,
din
+
input_offset
+
i
*
in_after
,
sizeof
(
dtype
)
*
out_after
);
}
input_offset
+=
out_strides
[
axis
];
}
}
void
test_split
(
int
bs
,
int
ic
,
int
ih
,
int
iw
,
int
axis
,
int
num
,
std
::
vector
<
int
>
sections
)
{
// prepare input&output variables
std
::
string
x_var_name
=
"x"
;
std
::
string
out_var_name_1
=
"out_1"
;
std
::
string
out_var_name_2
=
"out_2"
;
std
::
string
out_ref_var_name_1
=
"out_ref_1"
;
std
::
string
out_ref_var_name_2
=
"out_ref_2"
;
Scope
scope
;
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_1
=
scope
.
Var
(
out_var_name_1
)
->
GetMutable
<
Tensor
>
();
auto
*
out_2
=
scope
.
Var
(
out_var_name_2
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref_1
=
scope
.
Var
(
out_ref_var_name_1
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref_2
=
scope
.
Var
(
out_ref_var_name_2
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
({
bs
,
ic
,
ih
,
iw
});
// initialize input&output data
FillTensor
<
float
>
(
x
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"split"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name_1
,
out_var_name_2
});
opdesc
.
SetAttr
(
"axis"
,
axis
);
opdesc
.
SetAttr
(
"sections"
,
sections
);
opdesc
.
SetAttr
(
"num"
,
num
);
auto
op
=
CreateOp
<
operators
::
SplitOp
>
(
opdesc
,
&
scope
);
split_ref
<
float
>
(
op
);
out_ref_1
->
CopyDataFrom
(
*
out_1
);
out_ref_2
->
CopyDataFrom
(
*
out_2
);
// execute reference implementation and save to output tensor
Tensor
input
;
input
.
Resize
({
bs
,
ic
,
ih
,
iw
});
transpose
<
float
*>
(
x
->
mutable_data
<
float
>
(),
input
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
bs
),
static_cast
<
int
>
(
ic
),
static_cast
<
int
>
(
ih
),
static_cast
<
int
>
(
iw
)},
{
0
,
2
,
3
,
1
});
x
->
CopyDataFrom
(
input
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name_1
,
out_var_name_2
});
// compare results
auto
*
out_data_1
=
out_1
->
mutable_data
<
float
>
();
auto
*
out_data_2
=
out_2
->
mutable_data
<
float
>
();
auto
*
out_ref_data_1
=
out_ref_1
->
mutable_data
<
float
>
();
auto
*
out_ref_data_2
=
out_ref_2
->
mutable_data
<
float
>
();
Tensor
output1
,
output2
;
output1
.
Resize
(
out_1
->
dims
());
output2
.
Resize
(
out_2
->
dims
());
transpose
<
float
*>
(
out_data_1
,
output1
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
out_1
->
dims
()[
0
]),
static_cast
<
int
>
(
out_1
->
dims
()[
2
]),
static_cast
<
int
>
(
out_1
->
dims
()[
3
]),
static_cast
<
int
>
(
out_1
->
dims
()[
1
])},
{
0
,
3
,
1
,
2
});
transpose
<
float
*>
(
out_data_2
,
output2
.
mutable_data
<
float
>
(),
{
static_cast
<
int
>
(
out_2
->
dims
()[
0
]),
static_cast
<
int
>
(
out_2
->
dims
()[
2
]),
static_cast
<
int
>
(
out_2
->
dims
()[
3
]),
static_cast
<
int
>
(
out_2
->
dims
()[
1
])},
{
0
,
3
,
1
,
2
});
out_data_1
=
output1
.
mutable_data
<
float
>
();
out_data_2
=
output2
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out_1
->
dims
().
production
();
i
++
)
{
VLOG
(
5
)
<<
i
;
EXPECT_NEAR
(
out_data_1
[
i
],
out_ref_data_1
[
i
],
5e-4
);
}
for
(
int
i
=
0
;
i
<
out_2
->
dims
().
production
();
i
++
)
{
VLOG
(
5
)
<<
i
;
EXPECT_NEAR
(
out_data_2
[
i
],
out_ref_data_2
[
i
],
5e-4
);
}
}
TEST
(
MLUBridges
,
split
)
{
test_split
(
4
,
2
,
3
,
1
,
0
,
2
,
{});
test_split
(
4
,
2
,
3
,
1
,
0
,
0
,
{
3
,
1
});
test_split
(
4
,
6
,
3
,
1
,
1
,
2
,
{});
test_split
(
4
,
6
,
3
,
1
,
1
,
0
,
{
2
,
4
});
test_split
(
4
,
2
,
2
,
1
,
2
,
2
,
{});
test_split
(
4
,
2
,
6
,
1
,
2
,
0
,
{
3
,
3
});
test_split
(
4
,
2
,
3
,
4
,
3
,
2
,
{});
test_split
(
4
,
2
,
3
,
6
,
3
,
0
,
{
5
,
1
});
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
split
,
kMLU
);
lite/kernels/mlu/bridges/squeeze_op.cc
0 → 100644
浏览文件 @
f0a6ddfd
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
SqueezeConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
// Create act node and set params from op
auto
fp_type
=
graph
->
FPType
();
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
fp_type
);
CHECK
(
graph
->
HasNode
(
x_var_name
));
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
auto
output_dims_nhwc
=
DimNCHW2NHWC
(
output_dims
);
std
::
vector
<
int
>
o_dims
(
output_dims
.
size
());
std
::
transform
(
output_dims_nhwc
.
cbegin
(),
output_dims_nhwc
.
cend
(),
o_dims
.
begin
(),
[](
DDim
::
value_type
d
)
{
return
static_cast
<
int
>
(
d
);
});
cnmlReshapeOpParam_t
param
;
cnmlBaseOp_t
squeeze_op
;
CNML_CALL
(
cnmlCreateNdReshapeOpParam
(
&
param
,
o_dims
.
data
(),
o_dims
.
size
()));
CNML_CALL
(
cnmlCreateReshapeOp
(
&
squeeze_op
,
param
,
input_tensor
->
mlu_tensor
(),
output_tensor
->
mlu_tensor
()));
CNML_CALL
(
cnmlDestroyReshapeOpParam
(
&
param
));
graph
->
FuseOp
(
squeeze_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
squeeze_op
));
if
(
op_type
==
"squeeze2"
)
{
auto
xshape_var_name
=
op_info
->
Output
(
"XShape"
).
front
();
auto
xshape
=
scope
->
FindVar
(
xshape_var_name
)
->
GetMutable
<
Tensor
>
();
auto
dims_64
=
xshape
->
dims
().
Vectorize
();
auto
dims_64_nhwc
=
DimNCHW2NHWC
(
dims_64
);
auto
xshape_tensor
=
graph
->
AddNode
(
xshape_var_name
,
dims_64
,
CNML_TENSOR
,
CNML_NCHW
,
fp_type
);
std
::
vector
<
int
>
xshape_dims
(
dims_64
.
size
());
std
::
transform
(
dims_64_nhwc
.
cbegin
(),
dims_64_nhwc
.
cend
(),
xshape_dims
.
begin
(),
[](
DDim
::
value_type
d
)
{
return
static_cast
<
int
>
(
d
);
});
cnmlBaseOp_t
squeeze2_op
;
CNML_CALL
(
cnmlCreateNdReshapeOpParam
(
&
param
,
xshape_dims
.
data
(),
xshape_dims
.
size
()));
CNML_CALL
(
cnmlCreateReshapeOp
(
&
squeeze2_op
,
param
,
input_tensor
->
mlu_tensor
(),
xshape_tensor
->
mlu_tensor
()));
CNML_CALL
(
cnmlDestroyReshapeOpParam
(
&
param
));
graph
->
FuseOp
(
squeeze2_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
squeeze2_op
));
}
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
squeeze
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
SqueezeConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
squeeze2
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
SqueezeConverter
);
lite/kernels/mlu/bridges/squeeze_op_test.cc
0 → 100644
浏览文件 @
f0a6ddfd
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/squeeze_op.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
// squeeze
TEST
(
MLUBridges
,
squeeze
)
{
Scope
scope
;
std
::
string
x_var_name
(
"x"
);
std
::
string
out_var_name
(
"out"
);
std
::
string
ref_var_name
(
"ref"
);
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
ref_var_name
)
->
GetMutable
<
Tensor
>
();
std
::
vector
<
int64_t
>
x_shape
({
1
,
3
,
1
,
5
});
x
->
Resize
(
x_shape
);
out_ref
->
Resize
(
x_shape
);
std
::
vector
<
int64_t
>
out_shape
({
3
,
5
});
out
->
Resize
(
out_shape
);
FillTensor
<
float
>
(
x
,
0
,
10
);
out_ref
->
CopyDataFrom
(
*
x
);
// SqueezeCompute squeeze;
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"squeeze"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
std
::
vector
<
int
>
axes
{
0
,
-
2
};
opdesc
.
SetAttr
(
"axes"
,
axes
);
// create and convert op to MLU model, then run it on MLU
auto
op
=
CreateOp
<
operators
::
SqueezeOp
>
(
opdesc
,
&
scope
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
auto
x_data
=
out_ref
->
data
<
float
>
();
auto
out_data
=
out
->
data
<
float
>
();
for
(
int
j
=
0
;
j
<
out
->
numel
();
++
j
)
{
EXPECT_NEAR
(
out_data
[
j
],
x_data
[
j
],
1e-5
);
}
}
// squeeze2
TEST
(
MLUBridges
,
squeeze2
)
{
Scope
scope
;
std
::
string
x_var_name
(
"x"
);
std
::
string
out_var_name
(
"out"
);
std
::
string
xshape_var_name
(
"xshape"
);
std
::
string
ref_var_name
(
"ref"
);
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
xshape
=
scope
.
Var
(
xshape_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
ref_var_name
)
->
GetMutable
<
Tensor
>
();
std
::
vector
<
int64_t
>
x_shape
({
1
,
3
,
1
,
5
});
x
->
Resize
(
x_shape
);
out_ref
->
Resize
(
x_shape
);
std
::
vector
<
int64_t
>
out_shape
({
3
,
5
});
out
->
Resize
(
out_shape
);
std
::
vector
<
int64_t
>
xshape_shape
({
1
,
3
,
1
,
5
});
xshape
->
Resize
(
xshape_shape
);
FillTensor
<
float
>
(
x
,
0
,
10
);
out_ref
->
CopyDataFrom
(
*
x
);
// Squeeze2Compute squeeze2;
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"squeeze2"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
opdesc
.
SetOutput
(
"XShape"
,
{
xshape_var_name
});
std
::
vector
<
int
>
axes
({
0
,
-
2
});
opdesc
.
SetAttr
(
"axes"
,
axes
);
// create and convert op to MLU model, then run it on MLU
auto
op
=
CreateOp
<
operators
::
SqueezeOp
>
(
opdesc
,
&
scope
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
,
xshape_var_name
});
auto
x_data
=
out_ref
->
mutable_data
<
float
>
();
auto
out_data
=
out
->
mutable_data
<
float
>
();
auto
xshape_data
=
xshape
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
out
->
numel
();
++
j
)
{
EXPECT_NEAR
(
out_data
[
j
],
x_data
[
j
],
1e-5
);
EXPECT_NEAR
(
xshape_data
[
j
],
x_data
[
j
],
1e-5
);
}
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
squeeze
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
squeeze2
,
kMLU
);
lite/kernels/mlu/bridges/utility.h
浏览文件 @
f0a6ddfd
...
@@ -103,14 +103,44 @@ inline const ::paddle::lite::DDimLite DimNCHW2NHWC(
...
@@ -103,14 +103,44 @@ inline const ::paddle::lite::DDimLite DimNCHW2NHWC(
std
::
vector
<
int64_t
>
({
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
1
]}));
std
::
vector
<
int64_t
>
({
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
1
]}));
}
}
inline
const
std
::
vector
<
int64_t
>
DimNHWC2NCHW
(
inline
const
std
::
vector
<
DDimLite
::
value_type
>
DimNHWC2NCHW
(
const
std
::
vector
<
int64_t
>&
dim
)
{
const
std
::
vector
<
DDimLite
::
value_type
>&
dim
)
{
return
std
::
vector
<
int64_t
>
({
dim
[
0
],
dim
[
3
],
dim
[
1
],
dim
[
2
]});
switch
(
dim
.
size
())
{
case
1
:
return
dim
;
case
2
:
return
dim
;
case
3
:
return
std
::
vector
<
DDimLite
::
value_type
>
({
dim
[
0
],
dim
[
2
],
dim
[
1
]});
case
4
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
3
],
dim
[
1
],
dim
[
2
]});
case
5
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
4
],
dim
[
1
],
dim
[
2
],
dim
[
3
]});
default:
CHECK
(
0
)
<<
"unsupport dimension"
;
}
}
}
inline
const
std
::
vector
<
int64_t
>
DimNCHW2NHWC
(
inline
const
std
::
vector
<
DDimLite
::
value_type
>
DimNCHW2NHWC
(
const
std
::
vector
<
int64_t
>&
dim
)
{
const
std
::
vector
<
DDimLite
::
value_type
>&
dim
)
{
return
std
::
vector
<
int64_t
>
({
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
1
]});
switch
(
dim
.
size
())
{
case
1
:
return
dim
;
case
2
:
return
dim
;
case
3
:
return
std
::
vector
<
DDimLite
::
value_type
>
({
dim
[
0
],
dim
[
2
],
dim
[
1
]});
case
4
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
1
]});
case
5
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
4
],
dim
[
1
]});
default:
CHECK
(
0
)
<<
"unsupport dimension"
;
}
}
}
template
<
paddle
::
lite_api
::
PrecisionType
>
template
<
paddle
::
lite_api
::
PrecisionType
>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录