Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
cce54cb6
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
337
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cce54cb6
编写于
5月 08, 2020
作者:
D
dingminghui
提交者:
jackzhang235
5月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(squeeze): add squeeze converter
上级
148fafe8
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
258 addition
and
6 deletion
+258
-6
lite/kernels/mlu/bridges/CMakeLists.txt
lite/kernels/mlu/bridges/CMakeLists.txt
+3
-0
lite/kernels/mlu/bridges/paddle_use_bridges.h
lite/kernels/mlu/bridges/paddle_use_bridges.h
+3
-0
lite/kernels/mlu/bridges/squeeze_op.cc
lite/kernels/mlu/bridges/squeeze_op.cc
+100
-0
lite/kernels/mlu/bridges/squeeze_op_test.cc
lite/kernels/mlu/bridges/squeeze_op_test.cc
+116
-0
lite/kernels/mlu/bridges/utility.h
lite/kernels/mlu/bridges/utility.h
+36
-6
未找到文件。
lite/kernels/mlu/bridges/CMakeLists.txt
浏览文件 @
cce54cb6
...
...
@@ -23,6 +23,7 @@ lite_cc_library(subgraph_bridge_dropout_op_mlu SRCS dropout_op.cc DEPS ${subgrap
lite_cc_library
(
subgraph_bridge_slice_op_mlu SRCS slice_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_split_op_mlu SRCS split_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_argmax_op_mlu SRCS argmax_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
lite_cc_library
(
subgraph_bridge_squeeze_op_mlu SRCS squeeze_op.cc DEPS
${
subgraph_bridge_deps_mlu
}
)
set
(
mlu_subgraph_bridges
subgraph_bridge_registry
subgraph_bridge_utility_mlu
...
...
@@ -42,6 +43,7 @@ set(mlu_subgraph_bridges
subgraph_bridge_slice_op_mlu
subgraph_bridge_split_op_mlu
subgraph_bridge_argmax_op_mlu
subgraph_bridge_squeeze_op_mlu
CACHE INTERNAL
"mlu_subgraph_bridges"
)
...
...
@@ -66,6 +68,7 @@ lite_cc_test(test_dropout_converter_mlu SRCS dropout_op_test.cc DEPS scope optim
lite_cc_test
(
test_slice_converter_mlu SRCS slice_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_split_converter_mlu SRCS split_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_argmax_converter_mlu SRCS argmax_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
lite_cc_test
(
test_squeeze_converter_mlu SRCS squeeze_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
if
(
LITE_BUILD_EXTRA
)
lite_cc_test
(
test_lrn_converter_mlu SRCS lrn_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program
${
mlu_subgraph_bridges
}
subgraph_compute_mlu subgraph_test_helper_mlu
)
endif
()
...
...
lite/kernels/mlu/bridges/paddle_use_bridges.h
浏览文件 @
cce54cb6
...
...
@@ -34,6 +34,9 @@ USE_SUBGRAPH_BRIDGE(elementwise_mul, kMLU);
USE_SUBGRAPH_BRIDGE
(
dropout
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
argmax
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
split
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
slice
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
squeeze
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
squeeze2
,
kMLU
);
#ifdef LITE_BUILD_EXTRA
USE_SUBGRAPH_BRIDGE
(
lrn
,
kMLU
)
#endif
lite/kernels/mlu/bridges/squeeze_op.cc
0 → 100644
浏览文件 @
cce54cb6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
int
SqueezeConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[MLU] Converting "
+
op_type
+
"..."
;
// Create act node and set params from op
auto
fp_type
=
graph
->
FPType
();
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
fp_type
);
CHECK
(
graph
->
HasNode
(
x_var_name
));
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
auto
output_dims_nhwc
=
DimNCHW2NHWC
(
output_dims
);
std
::
vector
<
int
>
o_dims
(
output_dims
.
size
());
std
::
transform
(
output_dims_nhwc
.
cbegin
(),
output_dims_nhwc
.
cend
(),
o_dims
.
begin
(),
[](
DDim
::
value_type
d
)
{
return
static_cast
<
int
>
(
d
);
});
cnmlReshapeOpParam_t
param
;
cnmlBaseOp_t
squeeze_op
;
CNML_CALL
(
cnmlCreateNdReshapeOpParam
(
&
param
,
o_dims
.
data
(),
o_dims
.
size
()));
CNML_CALL
(
cnmlCreateReshapeOp
(
&
squeeze_op
,
param
,
input_tensor
->
mlu_tensor
(),
output_tensor
->
mlu_tensor
()));
CNML_CALL
(
cnmlDestroyReshapeOpParam
(
&
param
));
graph
->
FuseOp
(
squeeze_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
squeeze_op
));
if
(
op_type
==
"squeeze2"
)
{
auto
xshape_var_name
=
op_info
->
Output
(
"XShape"
).
front
();
auto
xshape
=
scope
->
FindVar
(
xshape_var_name
)
->
GetMutable
<
Tensor
>
();
auto
dims_64
=
xshape
->
dims
().
Vectorize
();
auto
dims_64_nhwc
=
DimNCHW2NHWC
(
dims_64
);
auto
xshape_tensor
=
graph
->
AddNode
(
xshape_var_name
,
dims_64
,
CNML_TENSOR
,
CNML_NCHW
,
fp_type
);
std
::
vector
<
int
>
xshape_dims
(
dims_64
.
size
());
std
::
transform
(
dims_64_nhwc
.
cbegin
(),
dims_64_nhwc
.
cend
(),
xshape_dims
.
begin
(),
[](
DDim
::
value_type
d
)
{
return
static_cast
<
int
>
(
d
);
});
cnmlBaseOp_t
squeeze2_op
;
CNML_CALL
(
cnmlCreateNdReshapeOpParam
(
&
param
,
xshape_dims
.
data
(),
xshape_dims
.
size
()));
CNML_CALL
(
cnmlCreateReshapeOp
(
&
squeeze2_op
,
param
,
input_tensor
->
mlu_tensor
(),
xshape_tensor
->
mlu_tensor
()));
CNML_CALL
(
cnmlDestroyReshapeOpParam
(
&
param
));
graph
->
FuseOp
(
squeeze2_op
);
CNML_CALL
(
cnmlDestroyBaseOp
(
&
squeeze2_op
));
}
return
SUCCESS
;
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
squeeze
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
SqueezeConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
squeeze2
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
SqueezeConverter
);
lite/kernels/mlu/bridges/squeeze_op_test.cc
0 → 100644
浏览文件 @
cce54cb6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/squeeze_op.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
mlu
{
// squeeze
TEST
(
MLUBridges
,
squeeze
)
{
Scope
scope
;
std
::
string
x_var_name
(
"x"
);
std
::
string
out_var_name
(
"out"
);
std
::
string
ref_var_name
(
"ref"
);
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
ref_var_name
)
->
GetMutable
<
Tensor
>
();
std
::
vector
<
int64_t
>
x_shape
({
1
,
3
,
1
,
5
});
x
->
Resize
(
x_shape
);
out_ref
->
Resize
(
x_shape
);
std
::
vector
<
int64_t
>
out_shape
({
3
,
5
});
out
->
Resize
(
out_shape
);
FillTensor
<
float
>
(
x
,
0
,
10
);
out_ref
->
CopyDataFrom
(
*
x
);
// SqueezeCompute squeeze;
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"squeeze"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
std
::
vector
<
int
>
axes
{
0
,
-
2
};
opdesc
.
SetAttr
(
"axes"
,
axes
);
// create and convert op to MLU model, then run it on MLU
auto
op
=
CreateOp
<
operators
::
SqueezeOp
>
(
opdesc
,
&
scope
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
auto
x_data
=
out_ref
->
data
<
float
>
();
auto
out_data
=
out
->
data
<
float
>
();
for
(
int
j
=
0
;
j
<
out
->
numel
();
++
j
)
{
EXPECT_NEAR
(
out_data
[
j
],
x_data
[
j
],
1e-5
);
}
}
// squeeze2
TEST
(
MLUBridges
,
squeeze2
)
{
Scope
scope
;
std
::
string
x_var_name
(
"x"
);
std
::
string
out_var_name
(
"out"
);
std
::
string
xshape_var_name
(
"xshape"
);
std
::
string
ref_var_name
(
"ref"
);
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
xshape
=
scope
.
Var
(
xshape_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
ref_var_name
)
->
GetMutable
<
Tensor
>
();
std
::
vector
<
int64_t
>
x_shape
({
1
,
3
,
1
,
5
});
x
->
Resize
(
x_shape
);
out_ref
->
Resize
(
x_shape
);
std
::
vector
<
int64_t
>
out_shape
({
3
,
5
});
out
->
Resize
(
out_shape
);
std
::
vector
<
int64_t
>
xshape_shape
({
1
,
3
,
1
,
5
});
xshape
->
Resize
(
xshape_shape
);
FillTensor
<
float
>
(
x
,
0
,
10
);
out_ref
->
CopyDataFrom
(
*
x
);
// Squeeze2Compute squeeze2;
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"squeeze2"
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
opdesc
.
SetOutput
(
"XShape"
,
{
xshape_var_name
});
std
::
vector
<
int
>
axes
({
0
,
-
2
});
opdesc
.
SetAttr
(
"axes"
,
axes
);
// create and convert op to MLU model, then run it on MLU
auto
op
=
CreateOp
<
operators
::
SqueezeOp
>
(
opdesc
,
&
scope
);
LaunchOp
(
op
,
{
x_var_name
},
{
out_var_name
,
xshape_var_name
});
auto
x_data
=
out_ref
->
mutable_data
<
float
>
();
auto
out_data
=
out
->
mutable_data
<
float
>
();
auto
xshape_data
=
xshape
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
out
->
numel
();
++
j
)
{
EXPECT_NEAR
(
out_data
[
j
],
x_data
[
j
],
1e-5
);
EXPECT_NEAR
(
xshape_data
[
j
],
x_data
[
j
],
1e-5
);
}
}
}
// namespace mlu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
USE_SUBGRAPH_BRIDGE
(
squeeze
,
kMLU
);
USE_SUBGRAPH_BRIDGE
(
squeeze2
,
kMLU
);
lite/kernels/mlu/bridges/utility.h
浏览文件 @
cce54cb6
...
...
@@ -103,14 +103,44 @@ inline const ::paddle::lite::DDimLite DimNCHW2NHWC(
std
::
vector
<
int64_t
>
({
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
1
]}));
}
inline
const
std
::
vector
<
int64_t
>
DimNHWC2NCHW
(
const
std
::
vector
<
int64_t
>&
dim
)
{
return
std
::
vector
<
int64_t
>
({
dim
[
0
],
dim
[
3
],
dim
[
1
],
dim
[
2
]});
inline
const
std
::
vector
<
DDimLite
::
value_type
>
DimNHWC2NCHW
(
const
std
::
vector
<
DDimLite
::
value_type
>&
dim
)
{
switch
(
dim
.
size
())
{
case
1
:
return
dim
;
case
2
:
return
dim
;
case
3
:
return
std
::
vector
<
DDimLite
::
value_type
>
({
dim
[
0
],
dim
[
2
],
dim
[
1
]});
case
4
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
3
],
dim
[
1
],
dim
[
2
]});
case
5
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
4
],
dim
[
1
],
dim
[
2
],
dim
[
3
]});
default:
CHECK
(
0
)
<<
"unsupport dimension"
;
}
}
inline
const
std
::
vector
<
int64_t
>
DimNCHW2NHWC
(
const
std
::
vector
<
int64_t
>&
dim
)
{
return
std
::
vector
<
int64_t
>
({
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
1
]});
inline
const
std
::
vector
<
DDimLite
::
value_type
>
DimNCHW2NHWC
(
const
std
::
vector
<
DDimLite
::
value_type
>&
dim
)
{
switch
(
dim
.
size
())
{
case
1
:
return
dim
;
case
2
:
return
dim
;
case
3
:
return
std
::
vector
<
DDimLite
::
value_type
>
({
dim
[
0
],
dim
[
2
],
dim
[
1
]});
case
4
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
1
]});
case
5
:
return
std
::
vector
<
DDimLite
::
value_type
>
(
{
dim
[
0
],
dim
[
2
],
dim
[
3
],
dim
[
4
],
dim
[
1
]});
default:
CHECK
(
0
)
<<
"unsupport dimension"
;
}
}
template
<
paddle
::
lite_api
::
PrecisionType
>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录