提交 dd04d950 编写于 作者: E eclipsycn 提交者: GitHub

Merge pull request #291 from smilejames/develop

update conv op kernel
......@@ -35,14 +35,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
LOG(kLOG_DEBUG) << param;
const Tensor *input = param.Input();
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor filter = *param.Filter();
Tensor *output = param.Output();
// output->mutable_data<T>(context.GetPlace());
output->mutable_data<float>();
int groups = param.Groups();
std::vector<int> strides = param.Strides();
......@@ -53,17 +48,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
const int batch_size = static_cast<int>(input->dims()[0]);
// filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h,
// k_w}
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
// output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h,
// o_w}
std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
// use col_shape in the im2col calculation
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h,
// k_w, o_d,
// o_h, o_w}
size_t data_dim = filter_shape_vec.size() - 2;
std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
col_shape_vec[0] = input->dims()[1] / groups;
......@@ -73,24 +60,19 @@ void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
}
framework::DDim col_shape(framework::make_ddim(col_shape_vec));
// use col_matrix_shape in the gemm calculation
// size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w,
// o_d *
// o_h * o_w)
framework::DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, data_dim + 1);
bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
Tensor col;
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor col_matrix;
if (is_expand) {
col.mutable_data<float>(col_shape);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
}
DLOG << " col_shape = " << col_shape;
DLOG << " col_matrix_shape = " << col_matrix_shape;
framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size()));
......@@ -98,6 +80,7 @@ void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
DLOG << " filter.deims() = " << filter.dims();
framework::DDim output_matrix_shape = {
output->dims()[1],
......@@ -110,8 +93,6 @@ void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
math::Vol2ColFunctor<CPU, float> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;
// auto& dev_ctx = context.template
// device_context<DeviceContext>();
for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
......@@ -137,6 +118,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
DLOG << " out_slice " << out_slice.dims();
DLOG << " filter_slice " << filter_slice.dims();
DLOG << " col_matrix " << col_matrix.dims();
math::matmul<float>(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice,
static_cast<float>(0));
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册