Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
781d5fe3
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
781d5fe3
编写于
5月 26, 2018
作者:
Z
zhaojiaying01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update conv op kernel
上级
d0dc4984
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
7 addition
and
23 deletion
+7
-23
src/operators/kernel/arm/conv_kernel.cpp
src/operators/kernel/arm/conv_kernel.cpp
+7
-23
未找到文件。
src/operators/kernel/arm/conv_kernel.cpp
浏览文件 @
781d5fe3
...
...
@@ -35,14 +35,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
LOG
(
kLOG_DEBUG
)
<<
param
;
const
Tensor
*
input
=
param
.
Input
();
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
// output->mutable_data<T>(context.GetPlace()
);
output
->
mutable_data
<
float
>
(
);
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
...
...
@@ -53,17 +48,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
// filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h,
// k_w}
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
// output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h,
// o_w}
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
// use col_shape in the im2col calculation
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h,
// k_w, o_d,
// o_h, o_w}
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
...
...
@@ -73,24 +60,19 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
// use col_matrix_shape in the gemm calculation
// size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w,
// o_d *
// o_h * o_w)
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
DLOG
<<
" col_shape = "
<<
col_shape
;
DLOG
<<
" col_matrix_shape = "
<<
col_matrix_shape
;
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
...
...
@@ -98,6 +80,7 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
DLOG
<<
" filter.deims() = "
<<
filter
.
dims
();
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
...
...
@@ -110,8 +93,6 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
// auto& dev_ctx = context.template
// device_context<DeviceContext>();
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
...
...
@@ -137,6 +118,9 @@ void ConvKernel<CPU, float>::Compute(const ConvParam ¶m) const {
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
DLOG
<<
" out_slice "
<<
out_slice
.
dims
();
DLOG
<<
" filter_slice "
<<
filter_slice
.
dims
();
DLOG
<<
" col_matrix "
<<
col_matrix
.
dims
();
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录