Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
77811367
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
77811367
编写于
10月 11, 2019
作者:
Y
Yanzhan Yang
提交者:
GitHub
10月 11, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
1. fix group logic for convolution op. 2. add pixel shuffle op for OpenCL. (#2178)
上级
7931104f
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
385 addition
and
14 deletion
+385
-14
mobile/src/common/types.cpp
mobile/src/common/types.cpp
+3
-1
mobile/src/common/types.h
mobile/src/common/types.h
+1
-0
mobile/src/framework/load_ops.h
mobile/src/framework/load_ops.h
+3
-0
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
+12
-10
mobile/src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
mobile/src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+4
-3
mobile/src/operators/kernel/cl/cl_kernel/pixel_shuffle_kernel.cl
...src/operators/kernel/cl/cl_kernel/pixel_shuffle_kernel.cl
+114
-0
mobile/src/operators/kernel/cl/pixel_shuffle_kernel.cpp
mobile/src/operators/kernel/cl/pixel_shuffle_kernel.cpp
+80
-0
mobile/src/operators/kernel/pixel_shuffle_kernel.h
mobile/src/operators/kernel/pixel_shuffle_kernel.h
+44
-0
mobile/src/operators/op_param.h
mobile/src/operators/op_param.h
+30
-0
mobile/src/operators/pixel_shuffle_op.cpp
mobile/src/operators/pixel_shuffle_op.cpp
+43
-0
mobile/src/operators/pixel_shuffle_op.h
mobile/src/operators/pixel_shuffle_op.h
+47
-0
mobile/tools/op.cmake
mobile/tools/op.cmake
+4
-0
未找到文件。
mobile/src/common/types.cpp
浏览文件 @
77811367
...
@@ -133,6 +133,7 @@ const char *G_OP_TYPE_BEAM_SEARCH_DECODE = "beam_search_decode";
...
@@ -133,6 +133,7 @@ const char *G_OP_TYPE_BEAM_SEARCH_DECODE = "beam_search_decode";
const
char
*
G_OP_TYPE_FILL_CONSTAN_BATCH_SIZE_LIKE
=
const
char
*
G_OP_TYPE_FILL_CONSTAN_BATCH_SIZE_LIKE
=
"fill_constant_batch_size_like"
;
"fill_constant_batch_size_like"
;
const
char
*
G_OP_TYPE_FUSION_INSTANCENORM_RELU
=
"fusion_instancenorm_relu"
;
const
char
*
G_OP_TYPE_FUSION_INSTANCENORM_RELU
=
"fusion_instancenorm_relu"
;
const
char
*
G_OP_TYPE_PIXEL_SHUFFLE
=
"pixel_shuffle"
;
std
::
unordered_map
<
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
string
>>>
std
::
string
,
std
::
pair
<
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
string
>>>
...
@@ -256,5 +257,6 @@ std::unordered_map<
...
@@ -256,5 +257,6 @@ std::unordered_map<
{
G_OP_TYPE_BEAM_SEARCH_DECODE
,
{
G_OP_TYPE_BEAM_SEARCH_DECODE
,
{{
"Ids"
,
"Scores"
},
{
"SentenceIds"
,
"SentenceScores"
}}},
{{
"Ids"
,
"Scores"
},
{
"SentenceIds"
,
"SentenceScores"
}}},
{
G_OP_TYPE_FILL_CONSTAN_BATCH_SIZE_LIKE
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_FILL_CONSTAN_BATCH_SIZE_LIKE
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_PAD2D
,
{{
"X"
},
{
"Out"
}}}};
{
G_OP_TYPE_PAD2D
,
{{
"X"
},
{
"Out"
}}},
{
G_OP_TYPE_PIXEL_SHUFFLE
,
{{
"X"
},
{
"Out"
}}}};
}
// namespace paddle_mobile
}
// namespace paddle_mobile
mobile/src/common/types.h
浏览文件 @
77811367
...
@@ -264,6 +264,7 @@ extern const char *G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU;
...
@@ -264,6 +264,7 @@ extern const char *G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU;
extern
const
char
*
G_OP_TYPE_FUSION_DECONV_ADD_BN
;
extern
const
char
*
G_OP_TYPE_FUSION_DECONV_ADD_BN
;
extern
const
char
*
G_OP_TYPE_FUSION_DECONV_BN_RELU
;
extern
const
char
*
G_OP_TYPE_FUSION_DECONV_BN_RELU
;
extern
const
char
*
G_OP_TYPE_FUSION_INSTANCENORM_RELU
;
extern
const
char
*
G_OP_TYPE_FUSION_INSTANCENORM_RELU
;
extern
const
char
*
G_OP_TYPE_PIXEL_SHUFFLE
;
extern
std
::
unordered_map
<
extern
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
string
>>>
std
::
string
,
std
::
pair
<
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
string
>>>
...
...
mobile/src/framework/load_ops.h
浏览文件 @
77811367
...
@@ -377,3 +377,6 @@ LOAD_OP1(range, CPU);
...
@@ -377,3 +377,6 @@ LOAD_OP1(range, CPU);
#ifdef REDUCE_PROD_OP
#ifdef REDUCE_PROD_OP
LOAD_OP1
(
reduce_prod
,
CPU
);
LOAD_OP1
(
reduce_prod
,
CPU
);
#endif
#endif
#ifdef PIXEL_SHUFFLE_OP
LOAD_OP1
(
pixel_shuffle
,
GPU_CL
);
#endif
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
浏览文件 @
77811367
...
@@ -59,6 +59,7 @@ void ConvAddBnReluPt1x2(framework::CLHelper *cl_helper,
...
@@ -59,6 +59,7 @@ void ConvAddBnReluPt1x2(framework::CLHelper *cl_helper,
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
int
output_c
=
param
.
Output
()
->
dims
()[
1
];
int
filter_channel
=
param
.
Filter
()
->
dims
()[
1
];
int
filter_channel
=
param
.
Filter
()
->
dims
()[
1
];
int
input_channel
=
param
.
Input
()
->
dims
()[
1
];
int
input_channel
=
param
.
Input
()
->
dims
()[
1
];
//
//
...
@@ -216,6 +217,7 @@ void ConvAddBnRelu(framework::CLHelper *cl_helper,
...
@@ -216,6 +217,7 @@ void ConvAddBnRelu(framework::CLHelper *cl_helper,
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
int
output_c
=
param
.
Output
()
->
dims
()[
1
];
int
filter_channel
=
param
.
Filter
()
->
dims
()[
1
];
int
filter_channel
=
param
.
Filter
()
->
dims
()[
1
];
int
input_channel
=
param
.
Input
()
->
dims
()[
1
];
int
input_channel
=
param
.
Input
()
->
dims
()[
1
];
...
@@ -397,21 +399,21 @@ void ConvAddBnRelu(framework::CLHelper *cl_helper,
...
@@ -397,21 +399,21 @@ void ConvAddBnRelu(framework::CLHelper *cl_helper,
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_height
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_c
);
CL_CHECK_ERRORS
(
status
);
if
(
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Filter
()
->
dims
()[
3
]
==
3
)
{
if
(
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Filter
()
->
dims
()[
3
]
==
3
)
{
if
(
filter_channel
!=
input_channel
)
{
if
(
filter_channel
!=
input_channel
)
{
if
(
filter_channel
!=
1
)
{
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
filter_channel
);
status
=
CL_CHECK_ERRORS
(
status
);
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
filter_channel
);
int
group
=
input_channel
/
filter_channel
;
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
group
);
int
has_group
=
1
;
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
has_group
);
CL_CHECK_ERRORS
(
status
);
}
}
else
{
}
else
{
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
filter_channel
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
filter_channel
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
int
has_group
=
0
;
int
group
=
1
;
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
has_
group
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
group
);
CL_CHECK_ERRORS
(
status
);
CL_CHECK_ERRORS
(
status
);
}
}
}
}
...
...
mobile/src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
77811367
...
@@ -48,8 +48,9 @@ __kernel void conv_3x3(__private const int global_size_dim0,
...
@@ -48,8 +48,9 @@ __kernel void conv_3x3(__private const int global_size_dim0,
__private const int input_height,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_width,
__private const int output_height,
__private const int output_height,
__private const int output_c,
__private const int filter_channel,
__private const int filter_channel,
__private const int
has_
group) {
__private const int group) {
const int out_c = get_global_id(0);
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_w = get_global_id(1);
...
@@ -90,7 +91,7 @@ __kernel void conv_3x3(__private const int global_size_dim0,
...
@@ -90,7 +91,7 @@ __kernel void conv_3x3(__private const int global_size_dim0,
#endif
#endif
half4 input[9];
half4 input[9];
if (
has_group == 0
) {
if (
group == 1
) {
for (int i = 0; i < input_c; ++i) {
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
input[0] = select(read_imageh(input_image, sampler,
input[0] = select(read_imageh(input_image, sampler,
...
@@ -326,7 +327,7 @@ __kernel void conv_3x3(__private const int global_size_dim0,
...
@@ -326,7 +327,7 @@ __kernel void conv_3x3(__private const int global_size_dim0,
}
}
} else {
} else {
for (int i = 0; i < 4; i++) {
for (int i = 0; i < 4; i++) {
int used_input_channel_num = (out_c * 4 + i) * filter_channel;
int used_input_channel_num = (out_c * 4 + i)
/ (output_c / group)
* filter_channel;
for (int f_c = 0; f_c < filter_channel; ++f_c) {
for (int f_c = 0; f_c < filter_channel; ++f_c) {
int input_c = used_input_channel_num + f_c;
int input_c = used_input_channel_num + f_c;
int input_block = input_c / 4;
int input_block = input_c / 4;
...
...
mobile/src/operators/kernel/cl/cl_kernel/pixel_shuffle_kernel.cl
0 → 100644
浏览文件 @
77811367
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
pixel_shuffle
(
__read_only
image2d_t
input_image,
__write_only
image2d_t
output_image,
__private
const
int
in_N,
__private
const
int
in_C,
__private
const
int
in_H,
__private
const
int
in_W,
__private
const
int
out_N,
__private
const
int
out_C,
__private
const
int
out_H,
__private
const
int
out_W,
__private
const
int
upscale_factor
)
{
const
int
out_c4
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
int
out_h
=
out_nh
%
out_H
;
int
out_n
=
out_nh
/
out_H
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int
in_h
=
out_h
/
upscale_factor
;
int
in_w
=
out_w
/
upscale_factor
;
int
in_nh
=
out_n
*
in_H
+
in_h
;
half4
res
;
int
out_c
;
int
in_c
;
half4
in
;
int2
in_pos
;
out_c
=
out_c4
*
4
+
0
;
in_c
=
out_c
*
upscale_factor
*
upscale_factor
+
(
out_h
%
upscale_factor
)
*
upscale_factor
+
(
out_w
%
upscale_factor
)
;
in_pos.x
=
(
in_c
/
4
)
*
in_W
+
in_w
;
in_pos.y
=
in_nh
;
in
=
read_imageh
(
input_image,
sampler,
in_pos
)
;
if
(
in_c
%
4
==
0
)
{
res.x
=
in.x
;
}
else
if
(
in_c
%
4
==
1
)
{
res.x
=
in.y
;
}
else
if
(
in_c
%
4
==
2
)
{
res.x
=
in.z
;
}
else
if
(
in_c
%
4
==
3
)
{
res.x
=
in.w
;
}
out_c
=
out_c4
*
4
+
1
;
in_c
=
out_c
*
upscale_factor
*
upscale_factor
+
(
out_h
%
upscale_factor
)
*
upscale_factor
+
(
out_w
%
upscale_factor
)
;
in_pos.x
=
(
in_c
/
4
)
*
in_W
+
in_w
;
in_pos.y
=
in_nh
;
in
=
read_imageh
(
input_image,
sampler,
in_pos
)
;
if
(
in_c
%
4
==
0
)
{
res.y
=
in.x
;
}
else
if
(
in_c
%
4
==
1
)
{
res.y
=
in.y
;
}
else
if
(
in_c
%
4
==
2
)
{
res.y
=
in.z
;
}
else
if
(
in_c
%
4
==
3
)
{
res.y
=
in.w
;
}
out_c
=
out_c4
*
4
+
2
;
in_c
=
out_c
*
upscale_factor
*
upscale_factor
+
(
out_h
%
upscale_factor
)
*
upscale_factor
+
(
out_w
%
upscale_factor
)
;
in_pos.x
=
(
in_c
/
4
)
*
in_W
+
in_w
;
in_pos.y
=
in_nh
;
in
=
read_imageh
(
input_image,
sampler,
in_pos
)
;
if
(
in_c
%
4
==
0
)
{
res.z
=
in.x
;
}
else
if
(
in_c
%
4
==
1
)
{
res.z
=
in.y
;
}
else
if
(
in_c
%
4
==
2
)
{
res.z
=
in.z
;
}
else
if
(
in_c
%
4
==
3
)
{
res.z
=
in.w
;
}
out_c
=
out_c4
*
4
+
3
;
in_c
=
out_c
*
upscale_factor
*
upscale_factor
+
(
out_h
%
upscale_factor
)
*
upscale_factor
+
(
out_w
%
upscale_factor
)
;
in_pos.x
=
(
in_c
/
4
)
*
in_W
+
in_w
;
in_pos.y
=
in_nh
;
in
=
read_imageh
(
input_image,
sampler,
in_pos
)
;
if
(
in_c
%
4
==
0
)
{
res.w
=
in.x
;
}
else
if
(
in_c
%
4
==
1
)
{
res.w
=
in.y
;
}
else
if
(
in_c
%
4
==
2
)
{
res.w
=
in.z
;
}
else
if
(
in_c
%
4
==
3
)
{
res.w
=
in.w
;
}
int2
out_pos
;
out_pos.x
=
out_c4
*
out_W
+
out_w
;
out_pos.y
=
out_nh
;
write_imageh
(
output_image,
out_pos,
res
)
;
}
mobile/src/operators/kernel/cl/pixel_shuffle_kernel.cpp
0 → 100644
浏览文件 @
77811367
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PIXEL_SHUFFLE_OP
#include "operators/kernel/pixel_shuffle_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
PixelShuffleKernel
<
GPU_CL
,
float
>::
Init
(
PixelShuffleParam
<
GPU_CL
>
*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"pixel_shuffle"
,
"pixel_shuffle_kernel.cl"
);
return
true
;
}
template
<
>
void
PixelShuffleKernel
<
GPU_CL
,
float
>::
Compute
(
const
PixelShuffleParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Out
());
auto
input_image
=
param
.
InputX
()
->
GetCLImage
();
auto
output_image
=
param
.
Out
()
->
GetCLImage
();
auto
upscale_factor
=
param
.
upscale_factor
();
int
input_n
=
param
.
InputX
()
->
dims
()[
0
];
int
input_c
=
param
.
InputX
()
->
dims
()[
1
];
int
input_h
=
param
.
InputX
()
->
dims
()[
2
];
int
input_w
=
param
.
InputX
()
->
dims
()[
3
];
int
output_n
=
param
.
Out
()
->
dims
()[
0
];
int
output_c
=
param
.
Out
()
->
dims
()[
1
];
int
output_h
=
param
.
Out
()
->
dims
()[
2
];
int
output_w
=
param
.
Out
()
->
dims
()[
3
];
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
input_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
output_image
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
input_n
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
input_h
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
int
),
&
input_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
output_n
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
output_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
output_h
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
output_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
upscale_factor
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
mobile/src/operators/kernel/pixel_shuffle_kernel.h
0 → 100644
浏览文件 @
77811367
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef LRN_OP
#include <cmath>
#ifdef _OPENMP
#include <omp.h>
#endif
#ifdef __ARM_NEON
#include <arm_neon.h>
#include "operators/math/math.h"
#endif
#include "framework/operator.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
PixelShuffleKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
PixelShuffleParam
<
DeviceType
>>
{
public:
void
Compute
(
const
PixelShuffleParam
<
DeviceType
>
&
param
);
bool
Init
(
PixelShuffleParam
<
DeviceType
>
*
param
);
};
}
// namespace operators
}
// namespace paddle_mobile
#endif
mobile/src/operators/op_param.h
浏览文件 @
77811367
...
@@ -3628,5 +3628,35 @@ class EXPParam : public OpParam {
...
@@ -3628,5 +3628,35 @@ class EXPParam : public OpParam {
GType
*
out_
;
GType
*
out_
;
};
};
#endif
#endif
#ifdef PIXEL_SHUFFLE_OP
template
<
typename
Dtype
>
class
PixelShuffleParam
:
public
OpParam
{
typedef
typename
DtypeTensorTrait
<
Dtype
>::
gtype
GType
;
typedef
typename
DtypeTensorTrait
<
Dtype
>::
rtype
RType
;
public:
PixelShuffleParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
Scope
*
scope
)
:
OpParam
(
inputs
,
outputs
,
attrs
,
scope
)
{
input_x_
=
InputXFrom
<
GType
>
(
inputs
,
*
scope
);
out_
=
OutFrom
<
GType
>
(
outputs
,
*
scope
);
upscale_factor_
=
GetAttr
<
int
>
(
"upscale_factor"
,
attrs
);
}
const
GType
*
InputX
()
const
{
return
input_x_
;
}
GType
*
Out
()
const
{
return
out_
;
}
const
int
&
upscale_factor
()
const
{
return
upscale_factor_
;
}
private:
GType
*
input_x_
;
GType
*
out_
;
int
upscale_factor_
;
};
#endif
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
mobile/src/operators/pixel_shuffle_op.cpp
0 → 100644
浏览文件 @
77811367
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PIXEL_SHUFFLE_OP
#include "operators/pixel_shuffle_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
PixelShuffleOp
<
Dtype
,
T
>::
InferShape
()
const
{
auto
x_dims
=
this
->
param_
.
InputX
()
->
dims
();
int
n
=
x_dims
[
0
];
int
c
=
x_dims
[
1
];
int
h
=
x_dims
[
2
];
int
w
=
x_dims
[
3
];
int
upscale_factor
=
this
->
param_
.
upscale_factor
();
this
->
param_
.
Out
()
->
Resize
(
framework
::
make_ddim
({
n
,
c
/
(
upscale_factor
*
upscale_factor
),
h
*
upscale_factor
,
w
*
upscale_factor
}));
}
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL
(
pixel_shuffle
,
ops
::
PixelShuffleOp
);
#endif
#endif
mobile/src/operators/pixel_shuffle_op.h
0 → 100644
浏览文件 @
77811367
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PIXEL_SHUFFLE_OP
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/pixel_shuffle_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
std
::
string
;
template
<
typename
DeviceType
,
typename
T
>
class
PixelShuffleOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
PixelShuffleParam
<
DeviceType
>
,
operators
::
PixelShuffleKernel
<
DeviceType
,
T
>>
{
public:
PixelShuffleOp
(
const
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
framework
::
Scope
*
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
PixelShuffleParam
<
DeviceType
>
,
operators
::
PixelShuffleKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
void
InferShape
()
const
override
;
protected:
};
}
// namespace operators
}
// namespace paddle_mobile
#endif
mobile/tools/op.cmake
浏览文件 @
77811367
...
@@ -378,6 +378,7 @@ if(NOT FOUND_MATCH)
...
@@ -378,6 +378,7 @@ if(NOT FOUND_MATCH)
set
(
RANGE_OP ON
)
set
(
RANGE_OP ON
)
set
(
REDUCE_PROD_OP ON
)
set
(
REDUCE_PROD_OP ON
)
set
(
FUSION_INSTANCENORM_RELU_OP ON
)
set
(
FUSION_INSTANCENORM_RELU_OP ON
)
set
(
PIXEL_SHUFFLE_OP ON
)
endif
()
endif
()
# option(BATCHNORM_OP "" ON)
# option(BATCHNORM_OP "" ON)
...
@@ -751,3 +752,6 @@ endif()
...
@@ -751,3 +752,6 @@ endif()
if
(
REDUCE_PROD_OP
)
if
(
REDUCE_PROD_OP
)
add_definitions
(
-DREDUCE_PROD_OP
)
add_definitions
(
-DREDUCE_PROD_OP
)
endif
()
endif
()
if
(
PIXEL_SHUFFLE_OP
)
add_definitions
(
-DPIXEL_SHUFFLE_OP
)
endif
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录