提交 6fa059b2 编写于 作者: H hanbuhe

added test_tensor_qunat executable

上级 a5042501
......@@ -37,45 +37,57 @@ static void chw_to_hwc(Dtype* data_in, Dtype* data_out, int num, int channel,
}
}
template <typename Dtype>
static Dtype find_max(Dtype* data, int num) {
Dtype max = 0;
for (int i = 0; i < num; ++i) {
max = std::max(max, data[i]);
}
return max;
}
template <typename Dtype>
framework::Tensor* quantilize_filter(framework::Tensor* filter) {
float scale = 0;
float max = 0f;
float fix_range = static_cast<float>((1 << (8 - 1)) - 1);
const int batch_size = filter->dims()[0];
const int channel = filter->dims()[1];
const int height = filter->dims()[2];
const int width = filter->dims()[3];
int8_t* int_data = nullptr;
int8_t* tmp_data = new int[filter->numel()];
// 32bit filter -> 8bit filter;
if (filter->type() == typeid(float)) {
float* float_data = filter->data<float>();
for (int i = 0; i < filter->numel(); ++i) {
max = std::max(max, float_data[i]);
}
float max = find_max(float_data, filter->numel());
float fix_range = static_cast<float>((1 << (8 - 1)) - 1);
float float_range = max;
scale = (float_range / fix_range);
scale = (max / fix_range);
framework::Tensor* filter = filter;
framework::Tensor* quant_filter = new framework::Tensor();
int8_t* temp = new int8_t[filter->numel()];
int8_t* int_data = quant_filter->mutable_data<int8_t>();
int_data = quant_filter->mutable_data<int8_t>();
for (int i = 0; i < filter->numel(); ++i) {
temp[i] = (int8_t)float_data[i] * scale;
tmp_data[i] = (int8_t)float_data[i] * scale;
}
quant_filter.scale = scale;
// NCHW -> NHWC;
chw_to_hwc<int8_t>(temp, int_data, in_batch_size, channel, height, width);
return quantFilter;
} else if (filter->type() == typeid(int8_t)) {
// model is already quantilized
int8_t* int_data = filter->data<int8_t>();
filter = quant_filter;
} else {
int8_t max = find_max(filter->data<int8_t>(), filter->numel());
scale = (max / fix_range);
int_data = filter->data<int8_t>();
for (int i = 0; i < filter->numel(); ++i) {
max = std::max(max, int_data[i]);
tmp_data[i] = int_data[i];
}
int_data = filter->mutable_data<int8_t>();
}
// NCHW -> NHWC;
chw_to_hwc<int8_t>(tmp_data, int_data, batch_size, channel, height, width);
delete tmp_data;
*(filter->fpga_args().scale_pointer()) = scale;
return filter;
}
......
......@@ -36,18 +36,18 @@ void ConcatKernel<FPGA, float>::Compute(const ConcatParam &param) const {
auto out_channel = out_dim[3];
auto out_offset = 0;
for (int i = 0; i < inputs.size(); ++i) {
auto input = inputs[i];
auto channels = input->dims()[3];
out_offset += channels;
auto src = input->data<half>();
for (int j = 0; j < pixels; ++j) {
auto dst = out->data<half>() + out_offset;
auto dst = out->mutable_data<half>() + out_offset;
memory::Copy(dst, src, sizeof(half));
}
}
}
template class ConcatKernel<FPGA, float>;
} // namespace operators
} // namespace paddle_mobile
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#include "operators/kernel/conv_kernel.h"
#include "operators/kernel/central-arm-func/conv_arm_func.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvKernel<FPGA, float>::Init(ConvParam *param) {
return true;
}
template <>
void ConvKernel<FPGA, float>::Compute(const ConvParam &param) const {
// ConvCompute<float>(param);
}
template class ConvKernel<FPGA, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -160,4 +160,12 @@ else ()
#add_library(test-lib-size SHARED common/test_lib_size.h common/test_lib_size.cpp)
endif()
if(FPGA)
ADD_EXECUTABLE(test-tensor-quant fpga/test_tensor_quant.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-tensor-quant paddle-mobile)
endif()
......@@ -20,7 +20,7 @@ int main() {
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
bool optimize = false;
if (paddle_mobile.Load(g_googlenet, optimize)) {
auto time2 = time();
auto time1 = time();
DLOG << "load cost: " << time_diff(time1, time1) << "ms";
std::vector<float> input;
std::vector<int64_t> dims{1, 3, 224, 224};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册