Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
3b3abcbb
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3b3abcbb
编写于
4月 26, 2020
作者:
B
baolei.an
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[LITE][BM] support faceboxes and behavior image,test=develop
上级
1fe164fd
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
388 addition
and
65 deletion
+388
-65
lite/kernels/bm/bridges/CMakeLists.txt
lite/kernels/bm/bridges/CMakeLists.txt
+2
-1
lite/kernels/bm/bridges/density_prior_box_op.cc
lite/kernels/bm/bridges/density_prior_box_op.cc
+270
-0
lite/kernels/bm/bridges/elementwise_ops.cc
lite/kernels/bm/bridges/elementwise_ops.cc
+93
-42
lite/kernels/bm/bridges/matmul_op.cc
lite/kernels/bm/bridges/matmul_op.cc
+22
-22
lite/kernels/bm/bridges/paddle_use_bridges.h
lite/kernels/bm/bridges/paddle_use_bridges.h
+1
-0
未找到文件。
lite/kernels/bm/bridges/CMakeLists.txt
浏览文件 @
3b3abcbb
...
...
@@ -35,7 +35,7 @@ lite_cc_library(subgraph_bridge_assign_value_op_bm SRCS assign_value_op.cc DEPS
lite_cc_library
(
subgraph_bridge_shape_op_bm SRCS shape_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_split_op_bm SRCS split_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_matmul_op_bm SRCS matmul_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_density_prior_box_op_bm SRCS density_prior_box_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
set
(
bm_subgraph_bridges
subgraph_bridge_registry
...
...
@@ -69,4 +69,5 @@ set(bm_subgraph_bridges
subgraph_bridge_shape_op_bm
subgraph_bridge_split_op_bm
subgraph_bridge_matmul_op_bm
subgraph_bridge_density_prior_box_op_bm
CACHE INTERNAL
"bm_subgraph_bridges"
)
lite/kernels/bm/bridges/density_prior_box_op.cc
0 → 100644
浏览文件 @
3b3abcbb
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
bm
{
typedef
struct
__tag_st_priorbox_param
{
std
::
vector
<
float
>
fixed_sizes
;
std
::
vector
<
float
>
fixed_ratios
;
std
::
vector
<
int
>
densities
;
std
::
vector
<
float
>
variances
;
float
step_w
;
float
step_h
;
float
offset
;
int
prior_num
;
bool
clip
;
bool
flatten_to_2d
;
}
st_priorbox_param
;
float
*
compute_density_priorbox_kernel
(
OpLite
*
op
,
st_priorbox_param
*
param
)
{
auto
op_info
=
op
->
op_info
();
auto
scope
=
op
->
scope
();
// inputs
auto
in_var_name
=
op_info
->
Input
(
"Input"
).
front
();
auto
in
=
scope
->
FindVar
(
in_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
in_dims
=
in
->
dims
();
auto
img_var_name
=
op_info
->
Input
(
"Image"
).
front
();
auto
img
=
scope
->
FindVar
(
img_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
img_dims
=
img
->
dims
();
// outputs
auto
boxes_var_name
=
op_info
->
Output
(
"Boxes"
).
front
();
auto
boxes
=
scope
->
FindVar
(
boxes_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
var_var_name
=
op_info
->
Output
(
"Variances"
).
front
();
auto
var
=
scope
->
FindVar
(
var_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
img_width
=
img_dims
[
3
];
auto
img_height
=
img_dims
[
2
];
auto
feature_width
=
in_dims
[
3
];
auto
feature_height
=
in_dims
[
2
];
float
step_width
,
step_height
;
if
(
param
->
step_w
==
0.
f
||
param
->
step_h
==
0.
f
)
{
step_width
=
static_cast
<
float
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
float
>
(
img_height
)
/
feature_height
;
}
else
{
step_width
=
param
->
step_w
;
step_height
=
param
->
step_h
;
}
int
num_priors
=
0
;
for
(
size_t
i
=
0
;
i
<
param
->
densities
.
size
();
++
i
)
{
num_priors
+=
(
param
->
fixed_ratios
.
size
())
*
(
pow
(
param
->
densities
[
i
],
2
));
}
param
->
prior_num
=
num_priors
;
DDim
shape_out
({
feature_height
,
feature_width
,
num_priors
,
4
});
int32_t
channel_size
=
feature_height
*
feature_width
*
num_priors
*
4
;
boxes
->
Resize
(
shape_out
);
var
->
Resize
(
shape_out
);
int
step_average
=
static_cast
<
int
>
((
step_width
+
step_height
)
*
0.5
);
std
::
vector
<
float
>
sqrt_fixed_ratios
;
for
(
size_t
i
=
0
;
i
<
param
->
fixed_ratios
.
size
();
i
++
)
{
sqrt_fixed_ratios
.
push_back
(
sqrt
(
param
->
fixed_ratios
[
i
]));
}
float
*
cpu_data
=
static_cast
<
float
*>
(
malloc
(
sizeof
(
float
)
*
boxes
->
data_size
()
*
2
));
CHECK
(
cpu_data
!=
nullptr
);
float
*
b_t
=
cpu_data
;
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
float
center_x
=
(
w
+
param
->
offset
)
*
step_width
;
float
center_y
=
(
h
+
param
->
offset
)
*
step_height
;
for
(
size_t
s
=
0
;
s
<
param
->
fixed_sizes
.
size
();
++
s
)
{
auto
fixed_size
=
param
->
fixed_sizes
[
s
];
int
density
=
param
->
densities
[
s
];
int
shift
=
step_average
/
density
;
// Generate density prior boxes with fixed ratios.
for
(
size_t
r
=
0
;
r
<
param
->
fixed_ratios
.
size
();
++
r
)
{
float
box_width_ratio
=
fixed_size
*
sqrt_fixed_ratios
[
r
];
float
box_height_ratio
=
fixed_size
/
sqrt_fixed_ratios
[
r
];
float
density_center_x
=
center_x
-
step_average
/
2.
+
shift
/
2.
;
float
density_center_y
=
center_y
-
step_average
/
2.
+
shift
/
2.
;
for
(
int
di
=
0
;
di
<
density
;
++
di
)
{
for
(
int
dj
=
0
;
dj
<
density
;
++
dj
)
{
float
center_x_temp
=
density_center_x
+
dj
*
shift
;
float
center_y_temp
=
density_center_y
+
di
*
shift
;
b_t
[
0
]
=
std
::
max
(
(
center_x_temp
-
box_width_ratio
/
2.
)
/
img_width
,
0.
);
b_t
[
1
]
=
std
::
max
(
(
center_y_temp
-
box_height_ratio
/
2.
)
/
img_height
,
0.
);
b_t
[
2
]
=
std
::
min
(
(
center_x_temp
+
box_width_ratio
/
2.
)
/
img_width
,
1.
);
b_t
[
3
]
=
std
::
min
(
(
center_y_temp
+
box_height_ratio
/
2.
)
/
img_height
,
1.
);
b_t
+=
4
;
}
}
}
}
}
}
if
(
param
->
clip
)
{
for
(
int32_t
d
=
0
;
d
<
channel_size
;
++
d
)
{
cpu_data
[
d
]
=
std
::
min
(
std
::
max
(
cpu_data
[
d
],
0.
f
),
1.
f
);
}
}
float
*
ptr
=
cpu_data
+
channel_size
;
int
count
=
0
;
for
(
int32_t
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int32_t
w
=
0
;
w
<
feature_width
;
++
w
)
{
for
(
int32_t
i
=
0
;
i
<
param
->
prior_num
;
++
i
)
{
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
ptr
[
count
]
=
param
->
variances
[
j
];
++
count
;
}
}
}
}
return
cpu_data
;
}
int
DensityPriorBoxConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
// inputs
auto
in_var_name
=
op_info
->
Input
(
"Input"
).
front
();
auto
in
=
scope
->
FindVar
(
in_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
in_dims
=
in
->
dims
();
auto
img_var_name
=
op_info
->
Input
(
"Image"
).
front
();
auto
img
=
scope
->
FindVar
(
img_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
img_dims
=
img
->
dims
();
std
::
vector
<
int32_t
>
i_input_shape_data
(
in_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
in_dims
.
size
();
i
++
)
{
i_input_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
in_dims
[
i
]);
}
// outputs
auto
boxes_var_name
=
op_info
->
Output
(
"Boxes"
).
front
();
auto
boxes
=
scope
->
FindVar
(
boxes_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
var_var_name
=
op_info
->
Output
(
"Variances"
).
front
();
// param
st_priorbox_param
param
;
param
.
clip
=
op_info
->
GetAttr
<
bool
>
(
"clip"
);
param
.
flatten_to_2d
=
op_info
->
GetAttr
<
bool
>
(
"flatten_to_2d"
);
param
.
fixed_sizes
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"fixed_sizes"
);
param
.
fixed_ratios
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"fixed_ratios"
);
param
.
variances
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"variances"
);
param
.
densities
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"densities"
);
param
.
offset
=
op_info
->
GetAttr
<
float
>
(
"offset"
);
if
(
op_info
->
HasAttr
(
"step_w"
))
{
param
.
step_w
=
op_info
->
GetAttr
<
float
>
(
"step_w"
);
}
if
(
op_info
->
HasAttr
(
"step_h"
))
{
param
.
step_h
=
op_info
->
GetAttr
<
float
>
(
"step_h"
);
}
float
*
cpu_data
=
compute_density_priorbox_kernel
(
op
,
&
param
);
auto
boxes_dims
=
boxes
->
dims
();
std
::
vector
<
int32_t
>
i_pri_out_shape_data
(
3
);
i_pri_out_shape_data
[
0
]
=
1
;
i_pri_out_shape_data
[
1
]
=
2
;
i_pri_out_shape_data
[
2
]
=
boxes
->
data_size
();
auto
bm_priorbox_name
=
lite
::
subgraph
::
bm
::
UniqueName
(
"bm_priorbox"
);
add_priorbox_layer
(
graph
->
GetCompilerHandle
(),
const_cast
<
const
int
*>
(
&
i_input_shape_data
[
0
]),
in_dims
.
size
(),
static_cast
<
const
char
*>
(
in_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_pri_out_shape_data
[
0
]),
3
,
static_cast
<
const
char
*>
(
bm_priorbox_name
.
c_str
()),
static_cast
<
const
float
*>
(
cpu_data
),
0
,
nullptr
,
0
,
nullptr
,
0
,
nullptr
,
0
,
0
,
0
,
nullptr
,
0
,
0
,
0.
f
,
0.
f
,
0.
f
);
int32_t
*
shape
[
2
];
int32_t
dim
[
2
];
const
char
*
name
[
2
];
int32_t
dim_size
=
3
;
dim
[
0
]
=
dim_size
;
dim
[
1
]
=
dim_size
;
std
::
vector
<
int32_t
>
i_split_shape_data
(
dim_size
);
for
(
size_t
i
=
0
;
i
<
dim_size
;
i
++
)
{
i_split_shape_data
[
i
]
=
i_pri_out_shape_data
[
i
];
}
i_split_shape_data
[
1
]
/=
2
;
shape
[
0
]
=
&
i_split_shape_data
[
0
];
shape
[
1
]
=
&
i_split_shape_data
[
0
];
name
[
0
]
=
static_cast
<
const
char
*>
(
lite
::
subgraph
::
bm
::
UniqueName
(
"bm_boxes"
).
c_str
());
name
[
1
]
=
static_cast
<
const
char
*>
(
lite
::
subgraph
::
bm
::
UniqueName
(
"bm_boxes_var"
).
c_str
());
int
split_size
[
2
];
split_size
[
0
]
=
shape
[
0
][
1
];
split_size
[
1
]
=
shape
[
1
][
1
];
add_tf_split_layer
(
graph
->
GetCompilerHandle
(),
const_cast
<
const
int
*>
(
&
i_pri_out_shape_data
[
0
]),
3
,
static_cast
<
const
char
*>
(
bm_priorbox_name
.
c_str
()),
2
,
shape
,
dim
,
name
,
3
,
1
,
split_size
,
2
);
// final output
std
::
vector
<
int32_t
>
i_output_shape_data
(
boxes_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
boxes_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
boxes_dims
[
i
]);
}
add_reshape_layer_v2
(
graph
->
GetCompilerHandle
(),
name
[
0
],
shape
[
0
],
3
,
static_cast
<
const
char
*>
(
boxes_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_output_shape_data
[
0
]),
boxes_dims
.
size
());
add_reshape_layer_v2
(
graph
->
GetCompilerHandle
(),
name
[
1
],
shape
[
1
],
3
,
static_cast
<
const
char
*>
(
var_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_output_shape_data
[
0
]),
boxes_dims
.
size
());
graph
->
AddNode
(
boxes_var_name
);
graph
->
AddNode
(
var_var_name
);
return
SUCCESS
;
}
}
// namespace bm
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
density_prior_box
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
DensityPriorBoxConverter
);
lite/kernels/bm/bridges/elementwise_ops.cc
浏览文件 @
3b3abcbb
...
...
@@ -24,6 +24,48 @@ namespace lite {
namespace
subgraph
{
namespace
bm
{
float
*
compute_elementwise_both_const
(
OpLite
*
op
)
{
auto
op_info
=
op
->
op_info
();
auto
scope
=
op
->
scope
();
auto
op_type
=
op_info
->
Type
();
// input
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
x_dims
=
x
->
dims
();
auto
y_var_name
=
op_info
->
Input
(
"Y"
).
front
();
auto
y
=
scope
->
FindVar
(
y_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
y_dims
=
y
->
dims
();
// output
auto
output_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
output_dims
=
output
->
dims
();
float
*
cpu_data
=
static_cast
<
float
*>
(
malloc
(
sizeof
(
float
)
*
output
->
data_size
()));
CHECK
(
cpu_data
!=
nullptr
);
CHECK_EQ
(
x_dims
.
size
(),
y_dims
.
size
());
const
float
*
y_data
=
const_cast
<
const
float
*>
(
y
->
mutable_data
<
float
>
());
const
float
*
x_data
=
const_cast
<
const
float
*>
(
x
->
mutable_data
<
float
>
());
if
(
op_type
==
"elementwise_mul"
)
{
for
(
size_t
i
=
0
;
i
<
output
->
data_size
();
i
++
)
{
cpu_data
[
i
]
=
x_data
[
i
]
*
y_data
[
i
];
}
}
else
if
(
op_type
==
"elementwise_add"
)
{
for
(
size_t
i
=
0
;
i
<
output
->
data_size
();
i
++
)
{
cpu_data
[
i
]
=
x_data
[
i
]
+
y_data
[
i
];
}
}
else
if
(
op_type
==
"elementwise_sub"
)
{
for
(
size_t
i
=
0
;
i
<
output
->
data_size
();
i
++
)
{
cpu_data
[
i
]
=
x_data
[
i
]
-
y_data
[
i
];
}
}
else
if
(
op_type
==
"elementwise_div"
)
{
for
(
size_t
i
=
0
;
i
<
output
->
data_size
();
i
++
)
{
cpu_data
[
i
]
=
x_data
[
i
]
/
y_data
[
i
];
}
}
return
cpu_data
;
}
int
ElementwiseConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
...
...
@@ -41,21 +83,20 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
x_dims
=
x
->
dims
();
name
[
0
]
=
static_cast
<
const
char
*>
(
x_var_name
.
c_str
());
dim
[
0
]
=
x_dims
.
size
();
const
int64_t
*
x_shape_data
=
const_cast
<
const
int64_t
*>
(
&
x_dims
.
data
()[
0
]);
std
::
vector
<
int32_t
>
i_x_shape_data
(
x_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
i_x_shape_data
[
i
]
=
static_cast
<
int
>
(
x_
shape_data
[
i
]);
i_x_shape_data
[
i
]
=
static_cast
<
int
>
(
x_
dims
[
i
]);
}
shape
[
0
]
=
&
i_x_shape_data
[
0
];
bool
x_is_const
=
!
graph
->
HasNode
(
x_var_name
);
auto
y_var_name
=
op_info
->
Input
(
"Y"
).
front
();
auto
y
=
scope
->
FindVar
(
y_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
y_dims
=
y
->
dims
();
name
[
1
]
=
static_cast
<
const
char
*>
(
y_var_name
.
c_str
());
dim
[
1
]
=
y_dims
.
size
();
const
int64_t
*
y_shape_data
=
const_cast
<
const
int64_t
*>
(
&
y_dims
.
data
()[
0
]);
std
::
vector
<
int32_t
>
i_y_shape_data
(
y_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
y_dims
.
size
();
i
++
)
{
i_y_shape_data
[
i
]
=
static_cast
<
int
>
(
y_
shape_data
[
i
]);
i_y_shape_data
[
i
]
=
static_cast
<
int
>
(
y_
dims
[
i
]);
}
shape
[
1
]
=
&
i_y_shape_data
[
0
];
bool
y_is_const
=
!
graph
->
HasNode
(
y_var_name
);
...
...
@@ -86,46 +127,56 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
const
float
*
x_data
=
const_cast
<
const
float
*>
(
x
->
mutable_data
<
float
>
());
auto
unique_op_name
=
lite
::
subgraph
::
bm
::
UniqueName
(
"expand_ndims"
);
std
::
vector
<
int32_t
>
i_expand_shape_data
(
3
);
if
(
y_is_const
)
{
if
(
dim
[
0
]
==
dim
[
1
]
||
2
==
dim
[
0
])
{
bm_add_const_tensor
(
graph
->
GetCompilerHandle
(),
name
[
1
],
shape
[
1
],
dim
[
1
],
static_cast
<
bm_data_type_t
>
(
DTYPE_FP32
),
static_cast
<
const
void
*>
(
y_data
));
}
else
if
(
1
==
dim
[
1
]
&&
1
==
axis
)
{
add_expand_ndims_layer
(
graph
->
GetCompilerHandle
(),
name
[
1
],
shape
[
1
],
dim
[
1
],
static_cast
<
const
float
*>
(
y_data
),
-
1
,
2
,
static_cast
<
const
char
*>
(
unique_op_name
.
c_str
()));
name
[
1
]
=
static_cast
<
const
char
*>
(
unique_op_name
.
c_str
());
dim
[
1
]
=
3
;
i_expand_shape_data
[
0
]
=
i_y_shape_data
[
0
];
i_expand_shape_data
[
1
]
=
1
;
i_expand_shape_data
[
2
]
=
1
;
shape
[
1
]
=
&
i_expand_shape_data
[
0
];
y_data
=
nullptr
;
if
(
x_is_const
&&
y_is_const
)
{
float
*
cpu_data
=
compute_elementwise_both_const
(
op
);
bm_add_const_tensor
(
graph
->
GetCompilerHandle
(),
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_output_shape_data
[
0
]),
output_dims
.
size
(),
static_cast
<
bm_data_type_t
>
(
DTYPE_FP32
),
static_cast
<
const
void
*>
(
cpu_data
));
}
else
{
if
(
y_is_const
)
{
if
(
dim
[
0
]
==
dim
[
1
]
||
2
==
dim
[
0
])
{
bm_add_const_tensor
(
graph
->
GetCompilerHandle
(),
name
[
1
],
shape
[
1
],
dim
[
1
],
static_cast
<
bm_data_type_t
>
(
DTYPE_FP32
),
static_cast
<
const
void
*>
(
y_data
));
}
else
if
(
1
==
dim
[
1
]
&&
1
==
axis
)
{
add_expand_ndims_layer
(
graph
->
GetCompilerHandle
(),
name
[
1
],
shape
[
1
],
dim
[
1
],
static_cast
<
const
float
*>
(
y_data
),
-
1
,
2
,
static_cast
<
const
char
*>
(
unique_op_name
.
c_str
()));
name
[
1
]
=
static_cast
<
const
char
*>
(
unique_op_name
.
c_str
());
dim
[
1
]
=
3
;
i_expand_shape_data
[
0
]
=
i_y_shape_data
[
0
];
i_expand_shape_data
[
1
]
=
1
;
i_expand_shape_data
[
2
]
=
1
;
shape
[
1
]
=
&
i_expand_shape_data
[
0
];
y_data
=
nullptr
;
}
}
add_binary_layer_v2
(
graph
->
GetCompilerHandle
(),
name
[
0
],
shape
[
0
],
dim
[
0
],
0
,
static_cast
<
const
float
*>
(
x_data
),
name
[
1
],
shape
[
1
],
dim
[
1
],
0
,
static_cast
<
const
float
*>
(
y_data
),
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
op_code
);
}
add_binary_layer_v2
(
graph
->
GetCompilerHandle
(),
name
[
0
],
shape
[
0
],
dim
[
0
],
0
,
static_cast
<
const
float
*>
(
x_data
),
name
[
1
],
shape
[
1
],
dim
[
1
],
0
,
static_cast
<
const
float
*>
(
y_data
),
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()),
op_code
);
delete
[]
shape
;
delete
[]
name
;
delete
[]
dim
;
...
...
lite/kernels/bm/bridges/matmul_op.cc
浏览文件 @
3b3abcbb
...
...
@@ -36,46 +36,46 @@ int MatMulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
x_dims
=
x
->
dims
();
const
int64_t
*
x_shape_data
=
const_cast
<
const
int64_t
*>
(
&
x_dims
.
data
()[
0
]);
std
::
vector
<
int32_t
>
i_x_shape_data
(
x_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
i_x_shape_data
[
i
]
=
static_cast
<
int
>
(
x_
shape_data
[
i
]);
i_x_shape_data
[
i
]
=
static_cast
<
int
>
(
x_
dims
[
i
]);
}
auto
y_var_name
=
op_info
->
Input
(
"Y"
).
front
();
auto
y
=
scope
->
FindVar
(
y_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
y_dims
=
y
->
dims
();
const
int64_t
*
y_shape_data
=
const_cast
<
const
int64_t
*>
(
&
y_dims
.
data
()[
0
]);
std
::
vector
<
int32_t
>
i_y_shape_data
(
y_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
y_dims
.
size
();
i
++
)
{
i_y_shape_data
[
i
]
=
static_cast
<
int
>
(
y_
shape_data
[
i
]);
i_y_shape_data
[
i
]
=
static_cast
<
int
>
(
y_
dims
[
i
]);
}
// output
auto
output_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
out
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
out_dims
=
out
->
dims
();
std
::
vector
<
int32_t
>
i_out_shape_data
(
out_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
out_dims
.
size
();
i
++
)
{
i_out_shape_data
[
i
]
=
static_cast
<
int
>
(
out_dims
[
i
]);
}
bool
transpose_x
=
op_info
->
GetAttr
<
bool
>
(
"transpose_X"
);
bool
transpose_y
=
op_info
->
GetAttr
<
bool
>
(
"transpose_Y"
);
float
alpha
=
op_info
->
GetAttr
<
float
>
(
"alpha"
);
CHECK_EQ
(
alpha
,
1.
f
);
CHECK_EQ
(
transpose_x
,
0
);
CHECK_EQ
(
transpose_y
,
0
);
LOG
(
INFO
)
<<
x_dims
<<
" "
<<
y_dims
<<
" "
<<
alpha
<<
" "
<<
transpose_x
<<
" "
<<
transpose_y
;
#if 0
add_const_binary_layer(graph->GetCompilerHandle(),
const
float
*
y_data
=
const_cast
<
const
float
*>
(
y
->
mutable_data
<
float
>
());
const
float
*
x_data
=
const_cast
<
const
float
*>
(
x
->
mutable_data
<
float
>
());
add_batch_matmul_layer
(
graph
->
GetCompilerHandle
(),
static_cast
<
const
char
*>
(
x_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_x_shape_data
[
0
]),
x_dims
.
size
(),
scale,
static_cast<const char*>(unique_op_scale_name.c_str()),
BINARY_MUL,
0);
add_const_binary_layer(graph->GetCompilerHandle(),
static_cast<const char*>(unique_op_scale_name.c_str()),
const_cast<const int*>(&i_x_shape_data[0]),
x_dims.size(),
bias,
static_cast<const char*>(output_var_name.c_str()),
BINARY_ADD,
0);
#endif
0
,
x_data
,
static_cast
<
const
char
*>
(
y_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_y_shape_data
[
0
]),
y_dims
.
size
(),
0
,
y_data
,
static_cast
<
const
char
*>
(
output_var_name
.
c_str
()));
graph
->
AddNode
(
output_var_name
);
return
SUCCESS
;
}
...
...
lite/kernels/bm/bridges/paddle_use_bridges.h
浏览文件 @
3b3abcbb
...
...
@@ -60,3 +60,4 @@ USE_SUBGRAPH_BRIDGE(split, kBM);
USE_SUBGRAPH_BRIDGE
(
matmul
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
max_pool2d_with_index
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
sigmoid
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
density_prior_box
,
kBM
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录