Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
1fe164fd
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1fe164fd
编写于
4月 21, 2020
作者:
B
baolei.an
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[LITE][BM] optimize global pool,test=develop
上级
e2f3e4d9
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
24 addition
and
107 deletion
+24
-107
lite/kernels/bm/bridges/CMakeLists.txt
lite/kernels/bm/bridges/CMakeLists.txt
+0
-2
lite/kernels/bm/bridges/act_op.cc
lite/kernels/bm/bridges/act_op.cc
+5
-0
lite/kernels/bm/bridges/max_pool_with_index_op.cc
lite/kernels/bm/bridges/max_pool_with_index_op.cc
+0
-101
lite/kernels/bm/bridges/paddle_use_bridges.h
lite/kernels/bm/bridges/paddle_use_bridges.h
+1
-0
lite/kernels/bm/bridges/pool_op.cc
lite/kernels/bm/bridges/pool_op.cc
+18
-4
未找到文件。
lite/kernels/bm/bridges/CMakeLists.txt
浏览文件 @
1fe164fd
...
...
@@ -35,7 +35,6 @@ lite_cc_library(subgraph_bridge_assign_value_op_bm SRCS assign_value_op.cc DEPS
lite_cc_library
(
subgraph_bridge_shape_op_bm SRCS shape_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_split_op_bm SRCS split_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_matmul_op_bm SRCS matmul_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_max_pool_with_index_op_bm SRCS max_pool_with_index_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
set
(
bm_subgraph_bridges
...
...
@@ -70,5 +69,4 @@ set(bm_subgraph_bridges
subgraph_bridge_shape_op_bm
subgraph_bridge_split_op_bm
subgraph_bridge_matmul_op_bm
subgraph_bridge_max_pool_with_index_op_bm
CACHE INTERNAL
"bm_subgraph_bridges"
)
lite/kernels/bm/bridges/act_op.cc
浏览文件 @
1fe164fd
...
...
@@ -54,6 +54,8 @@ int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) {
active_type_id
=
ACTIVE_SQRT
;
}
else
if
(
op_type
==
"square"
)
{
active_type_id
=
ACTIVE_SQUARE
;
}
else
if
(
op_type
==
"sigmoid"
)
{
active_type_id
=
ACTIVE_SIGMOID
;
}
else
{
LOG
(
FATAL
)
<<
"[BM] unsupport act type"
;
return
FAILED
;
...
...
@@ -102,3 +104,6 @@ REGISTER_SUBGRAPH_BRIDGE(leaky_relu,
paddle
::
lite
::
subgraph
::
bm
::
ActConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
sqrt
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ActConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
square
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ActConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
sigmoid
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
ActConverter
);
lite/kernels/bm/bridges/max_pool_with_index_op.cc
已删除
100644 → 0
浏览文件 @
e2f3e4d9
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_defs.h>
#include <bmcompiler_if.h>
#include <bmcompiler_if_lite.h>
#include <user_bmcpu_common.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
bm
{
int
MaxPoolWithIndexConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
// input
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
x_dims
=
x
->
dims
();
std
::
vector
<
int32_t
>
i_x_shape_data
(
x_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
i_x_shape_data
[
i
]
=
static_cast
<
int
>
(
x_dims
[
i
]);
}
// output
auto
output_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
output_dims
=
output
->
dims
();
std
::
vector
<
int32_t
>
i_output_shape_data
(
output_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
output_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int
>
(
output_dims
[
i
]);
}
// ignore mask right now
auto
ksize
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"ksize"
);
auto
paddings
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"paddings"
);
auto
strides
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"strides"
);
auto
global_pooling
=
op_info
->
GetAttr
<
bool
>
(
"global_pooling"
);
auto
adaptive
=
op_info
->
GetAttr
<
bool
>
(
"adaptive"
);
if
(
global_pooling
)
{
paddings
[
0
]
=
0
;
paddings
[
1
]
=
0
;
ksize
[
0
]
=
i_x_shape_data
[
2
];
ksize
[
1
]
=
i_x_shape_data
[
3
];
}
CHECK_EQ
(
adaptive
,
true
);
user_cpu_param_t
bm_param
;
bm_param
.
op_type
=
USER_PADDLE_ADAPTIVE_POOL
;
bm_param
.
u
.
adaptive_pool_parm
.
is_avg
=
0
;
int32_t
*
in_shape
[
1
];
int32_t
in_dim
[
1
];
const
char
*
in_name
[
1
];
in_shape
[
0
]
=
&
i_x_shape_data
[
0
];
in_name
[
0
]
=
static_cast
<
const
char
*>
(
x_var_name
.
c_str
());
in_dim
[
0
]
=
x_dims
.
size
();
int32_t
*
shape
[
1
];
int32_t
dim
[
1
];
const
char
*
name
[
1
];
shape
[
0
]
=
&
i_output_shape_data
[
0
];
name
[
0
]
=
static_cast
<
const
char
*>
(
output_var_name
.
c_str
());
dim
[
0
]
=
output_dims
.
size
();
add_user_cpu_layer
(
graph
->
GetCompilerHandle
(),
1
,
in_shape
,
in_dim
,
in_name
,
1
,
shape
,
dim
,
name
,
&
bm_param
,
static_cast
<
int
>
(
sizeof
(
bm_param
)));
graph
->
AddNode
(
output_var_name
);
return
SUCCESS
;
}
}
// namespace bm
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
max_pool2d_with_index
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
MaxPoolWithIndexConverter
);
lite/kernels/bm/bridges/paddle_use_bridges.h
浏览文件 @
1fe164fd
...
...
@@ -59,3 +59,4 @@ USE_SUBGRAPH_BRIDGE(shape, kBM);
USE_SUBGRAPH_BRIDGE
(
split
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
matmul
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
max_pool2d_with_index
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
sigmoid
,
kBM
);
lite/kernels/bm/bridges/pool_op.cc
浏览文件 @
1fe164fd
...
...
@@ -57,13 +57,21 @@ int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
shape
[
0
]
=
&
i_output_shape_data
[
0
];
name
[
0
]
=
static_cast
<
const
char
*>
(
output_var_name
.
c_str
());
dim
[
0
]
=
output_dims
.
size
();
auto
pooling_type
=
op_info
->
GetAttr
<
std
::
string
>
(
"pooling_type"
);
std
::
string
pooling_type
;
if
(
op_info
->
HasAttr
(
"pooling_type"
))
{
pooling_type
=
op_info
->
GetAttr
<
std
::
string
>
(
"pooling_type"
);
}
else
if
(
op_type
==
"max_pool2d_with_index"
)
{
pooling_type
=
"max"
;
}
CHECK
(
pooling_type
==
"max"
||
pooling_type
==
"avg"
);
auto
ksize
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"ksize"
);
auto
paddings
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"paddings"
);
auto
strides
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"strides"
);
auto
global_pooling
=
op_info
->
GetAttr
<
bool
>
(
"global_pooling"
);
auto
ceil_mode
=
op_info
->
GetAttr
<
bool
>
(
"ceil_mode"
);
bool
ceil_mode
=
false
;
if
(
op_info
->
HasAttr
(
"ceil_mode"
))
{
ceil_mode
=
op_info
->
GetAttr
<
bool
>
(
"ceil_mode"
);
}
bool
adaptive
=
false
;
if
(
op_info
->
HasAttr
(
"adaptive"
))
{
adaptive
=
op_info
->
GetAttr
<
bool
>
(
"adaptive"
);
...
...
@@ -72,14 +80,17 @@ int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
if
(
pooling_type
==
"avg"
)
{
average_exclusive
=
op_info
->
GetAttr
<
bool
>
(
"exclusive"
);
}
if
(
output_dims
[
2
]
==
1
&&
output_dims
[
3
]
==
1
)
{
global_pooling
=
true
;
}
if
(
global_pooling
)
{
paddings
[
0
]
=
0
;
paddings
[
1
]
=
0
;
ksize
[
0
]
=
i_x_shape_data
[
2
];
ksize
[
1
]
=
i_x_shape_data
[
3
];
}
bool
is_max
=
(
ksize
[
0
]
>
1
&&
ksize
[
1
]
>
1
)
&&
pooling_type
==
"max"
;
if
(
adaptive
)
{
bool
is_max
=
(
pooling_type
==
"max"
)
;
if
(
adaptive
&&
!
global_pooling
)
{
user_cpu_param_t
bm_param
;
bm_param
.
op_type
=
USER_PADDLE_ADAPTIVE_POOL
;
bm_param
.
u
.
adaptive_pool_parm
.
is_avg
=
!
is_max
;
...
...
@@ -135,3 +146,6 @@ int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
REGISTER_SUBGRAPH_BRIDGE
(
pool2d
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
PoolConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
max_pool2d_with_index
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
PoolConverter
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录