Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
273e6fae
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
273e6fae
编写于
3月 19, 2020
作者:
J
jiaopu
提交者:
jackzhang235
3月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add interpolate in x86
上级
2bec4623
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
306 addition
and
0 deletion
+306
-0
lite/kernels/x86/CMakeLists.txt
lite/kernels/x86/CMakeLists.txt
+3
-0
lite/kernels/x86/interpolate_compute.cc
lite/kernels/x86/interpolate_compute.cc
+30
-0
lite/kernels/x86/interpolate_compute.h
lite/kernels/x86/interpolate_compute.h
+134
-0
lite/kernels/x86/interpolate_compute_test.cc
lite/kernels/x86/interpolate_compute_test.cc
+139
-0
未找到文件。
lite/kernels/x86/CMakeLists.txt
浏览文件 @
273e6fae
...
...
@@ -64,6 +64,7 @@ add_kernel(search_fc_compute_x86 X86 basic SRCS search_fc_compute.cc DEPS ${lite
add_kernel
(
matmul_compute_x86 X86 basic SRCS matmul_compute.cc DEPS
${
lite_kernel_deps
}
blas
)
add_kernel
(
yolo_box_compute_x86 X86 basic SRCS yolo_box_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
interpolate_compute_x86 X86 basic SRCS interpolate_compute.cc DEPS
${
lite_kernel_deps
}
)
lite_cc_test
(
test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86
)
lite_cc_test
(
test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86
)
...
...
@@ -104,3 +105,5 @@ lite_cc_test(test_sequence_arithmetic_compute_x86 SRCS sequence_arithmetic_compu
lite_cc_test
(
test_leaky_relu_compute_x86 SRCS leaky_relu_compute_test.cc DEPS activation_compute_x86
)
lite_cc_test
(
test_yolo_box_compute_x86 SRCS yolo_box_compute_test.cc DEPS
yolo_box_compute_x86
)
lite_cc_test
(
test_nearest_interp_comute_x86 SRCS interpolate_compute_test.cc
DEPS interpolate_compute_x86
)
lite/kernels/x86/interpolate_compute.cc
0 → 100644
浏览文件 @
273e6fae
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/interpolate_compute.h"
REGISTER_LITE_KERNEL
(
nearest_interp
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
InterpolateCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"OutSize"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
),
PRECISION
(
kInt32
))})
.
BindInput
(
"SizeTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
),
PRECISION
(
kInt32
))})
.
BindInput
(
"Scale"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
lite/kernels/x86/interpolate_compute.h
0 → 100644
浏览文件 @
273e6fae
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Eigen/Core>
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/operators/interpolate_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
inline
void
nearest_interp
(
const
float
*
src
,
int
w_in
,
int
h_in
,
float
*
dst
,
int
w_out
,
int
h_out
,
bool
with_align
)
{
float
scale_w_new
=
(
with_align
)
?
(
static_cast
<
float
>
(
w_in
-
1
)
/
(
w_out
-
1
))
:
(
static_cast
<
float
>
(
w_in
)
/
(
w_out
));
float
scale_h_new
=
(
with_align
)
?
(
static_cast
<
float
>
(
h_in
-
1
)
/
(
h_out
-
1
))
:
(
static_cast
<
float
>
(
h_in
)
/
(
h_out
));
if
(
with_align
)
{
for
(
int
h
=
0
;
h
<
h_out
;
++
h
)
{
float
*
dst_p
=
dst
+
h
*
w_out
;
int
near_y
=
static_cast
<
int
>
(
scale_h_new
*
h
+
0.5
);
for
(
int
w
=
0
;
w
<
w_out
;
++
w
)
{
int
near_x
=
static_cast
<
int
>
(
scale_w_new
*
w
+
0.5
);
*
dst_p
++
=
src
[
near_y
*
w_in
+
near_x
];
}
}
}
else
{
for
(
int
h
=
0
;
h
<
h_out
;
++
h
)
{
float
*
dst_p
=
dst
+
h
*
w_out
;
int
near_y
=
static_cast
<
int
>
(
scale_h_new
*
h
);
for
(
int
w
=
0
;
w
<
w_out
;
++
w
)
{
int
near_x
=
static_cast
<
int
>
(
scale_w_new
*
w
);
*
dst_p
++
=
src
[
near_y
*
w_in
+
near_x
];
}
}
}
}
inline
std
::
vector
<
int
>
get_new_shape
(
std
::
vector
<
const
lite
::
Tensor
*>
list_new_shape_tensor
)
{
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
tensor
->
data
<
int32_t
>
()));
}
return
vec_new_shape
;
}
class
InterpolateCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
InterpolateParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
int
in_h
=
param
.
X
->
dims
()[
2
];
int
in_w
=
param
.
X
->
dims
()[
3
];
if
(
param
.
SizeTensor
.
size
()
>
0
)
{
auto
new_size
=
get_new_shape
(
param
.
SizeTensor
);
param
.
out_h
=
new_size
[
0
];
param
.
out_w
=
new_size
[
1
];
}
else
{
auto
scale_tensor
=
param
.
Scale
;
if
(
scale_tensor
!=
nullptr
)
{
auto
*
scale_data
=
param
.
Scale
->
mutable_data
<
float
>
();
param
.
scale
=
scale_data
[
0
];
}
if
(
param
.
scale
>
0
)
{
param
.
out_h
=
static_cast
<
int
>
(
in_h
*
param
.
scale
);
param
.
out_w
=
static_cast
<
int
>
(
in_w
*
param
.
scale
);
}
if
(
param
.
OutSize
!=
nullptr
)
{
auto
*
outsize_data
=
param
.
OutSize
->
mutable_data
<
float
>
();
param
.
out_h
=
outsize_data
[
0
];
param
.
out_w
=
outsize_data
[
1
];
}
}
int
num_cout
=
param
.
X
->
dims
()[
0
];
int
c_cout
=
param
.
X
->
dims
()[
1
];
param
.
Out
->
Resize
({
num_cout
,
c_cout
,
param
.
out_h
,
param
.
out_w
});
float
*
dout
=
param
.
Out
->
mutable_data
<
float
>
();
const
float
*
din
=
param
.
X
->
data
<
float
>
();
int
out_num
=
param
.
Out
->
dims
()[
0
];
int
out_c
=
param
.
Out
->
dims
()[
1
];
int
count
=
out_num
*
out_c
;
int
out_h
=
param
.
Out
->
dims
()[
2
];
int
out_w
=
param
.
Out
->
dims
()[
3
];
int
spatial_in
=
in_h
*
in_w
;
int
spatial_out
=
out_h
*
out_w
;
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
nearest_interp
(
din
+
spatial_in
*
i
,
in_w
,
in_h
,
dout
+
spatial_out
*
i
,
out_w
,
out_h
,
param
.
align_corners
);
}
}
virtual
~
InterpolateCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/x86/interpolate_compute_test.cc
0 → 100644
浏览文件 @
273e6fae
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/interpolate_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
void
NearestInterpRef
(
lite
::
Tensor
*
input
,
lite
::
Tensor
*
output
,
bool
with_align
)
{
int
hin
=
input
->
dims
()[
2
];
int
win
=
input
->
dims
()[
3
];
int
channels
=
input
->
dims
()[
1
];
int
num
=
input
->
dims
()[
0
];
int
hout
=
output
->
dims
()[
2
];
int
wout
=
output
->
dims
()[
3
];
float
scale_w
=
(
with_align
)
?
(
static_cast
<
float
>
(
win
-
1
)
/
(
wout
-
1
))
:
(
static_cast
<
float
>
(
win
)
/
(
wout
));
float
scale_h
=
(
with_align
)
?
(
static_cast
<
float
>
(
hin
-
1
)
/
(
hout
-
1
))
:
(
static_cast
<
float
>
(
hin
)
/
(
hout
));
const
float
*
src
=
input
->
data
<
float
>
();
float
*
dst
=
output
->
mutable_data
<
float
>
();
int
dst_stride_w
=
1
;
int
dst_stride_h
=
wout
;
int
dst_stride_c
=
wout
*
hout
;
int
dst_stride_batch
=
wout
*
hout
*
channels
;
int
src_stride_w
=
1
;
int
src_stride_h
=
win
;
int
src_stride_c
=
win
*
hin
;
int
src_stride_batch
=
win
*
hin
*
channels
;
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
int
src_index
=
n
*
src_stride_batch
+
c
*
src_stride_c
;
for
(
int
h
=
0
;
h
<
hout
;
++
h
)
{
for
(
int
w
=
0
;
w
<
wout
;
++
w
)
{
int
fw
=
(
with_align
)
?
static_cast
<
int
>
(
scale_w
*
w
+
0.5
)
:
static_cast
<
int
>
(
scale_w
*
w
);
fw
=
(
fw
<
0
)
?
0
:
fw
;
int
fh
=
(
with_align
)
?
static_cast
<
int
>
(
scale_h
*
h
+
0.5
)
:
static_cast
<
int
>
(
scale_h
*
h
);
fh
=
(
fh
<
0
)
?
0
:
fh
;
int
w_start
=
static_cast
<
int
>
(
fw
);
int
h_start
=
static_cast
<
int
>
(
fh
);
int
dst_index
=
n
*
dst_stride_batch
+
c
*
dst_stride_c
+
h
*
dst_stride_h
+
w
*
dst_stride_w
;
dst
[
dst_index
]
=
src
[
src_index
+
w_start
*
src_stride_w
+
h_start
*
src_stride_h
];
}
}
}
}
}
TEST
(
interpolate_x86
,
retrive_op
)
{
auto
interpolate
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"nearest_interp"
);
ASSERT_FALSE
(
interpolate
.
empty
());
ASSERT_TRUE
(
interpolate
.
front
());
}
TEST
(
interpolate_x86
,
init
)
{
InterpolateCompute
interpolate
;
ASSERT_EQ
(
interpolate
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
interpolate
.
target
(),
TARGET
(
kX86
));
}
TEST
(
interpolate_x86
,
run_test
)
{
lite
::
Tensor
X
,
OutSize
,
Out
,
Out_base
;
operators
::
InterpolateParam
param
;
InterpolateCompute
interpolate
;
int
n
=
1
,
c
=
3
,
in_h
=
40
,
in_w
=
40
;
int
out_h
=
80
,
out_w
=
80
;
float
scale
=
2.0
;
param
.
out_h
=
out_h
;
param
.
out_w
=
out_w
;
param
.
scale
=
scale
;
param
.
align_corners
=
false
;
X
.
Resize
({
n
,
c
,
in_h
,
in_w
});
OutSize
.
Resize
({
2
});
Out
.
Resize
({
n
,
c
,
out_h
,
out_w
});
Out_base
.
Resize
({
n
,
c
,
out_h
,
out_w
});
auto
*
out_data
=
Out
.
mutable_data
<
float
>
();
auto
*
out_base_data
=
Out_base
.
mutable_data
<
float
>
();
auto
*
x_data
=
X
.
mutable_data
<
float
>
();
auto
*
outsize_data
=
OutSize
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
X
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
i
+
5.0
;
}
outsize_data
[
0
]
=
out_h
;
outsize_data
[
1
]
=
out_w
;
param
.
X
=
&
X
;
param
.
OutSize
=
&
OutSize
;
param
.
Out
=
&
Out
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
X86Context
>
();
interpolate
.
SetContext
(
std
::
move
(
ctx
));
interpolate
.
SetParam
(
std
::
move
(
param
));
interpolate
.
Run
();
NearestInterpRef
(
&
X
,
&
Out_base
,
false
);
for
(
int
i
=
0
;
i
<
Out
.
dims
().
production
();
i
++
)
{
LOG
(
INFO
)
<<
out_data
[
i
];
EXPECT_NEAR
(
out_data
[
i
],
out_base_data
[
i
],
1e-5
);
}
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
nearest_interp
,
kX86
,
kFloat
,
kNCHW
,
def
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录