Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
2bec4623
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
337
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2bec4623
编写于
3月 21, 2020
作者:
J
jiaopu
提交者:
jackzhang235
3月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add yolo_box in x86
上级
5009a3b6
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
460 addition
and
0 deletion
+460
-0
lite/kernels/x86/CMakeLists.txt
lite/kernels/x86/CMakeLists.txt
+3
-0
lite/kernels/x86/yolo_box_compute.cc
lite/kernels/x86/yolo_box_compute.cc
+28
-0
lite/kernels/x86/yolo_box_compute.h
lite/kernels/x86/yolo_box_compute.h
+178
-0
lite/kernels/x86/yolo_box_compute_test.cc
lite/kernels/x86/yolo_box_compute_test.cc
+251
-0
未找到文件。
lite/kernels/x86/CMakeLists.txt
浏览文件 @
2bec4623
...
@@ -63,6 +63,7 @@ add_kernel(sequence_topk_avg_pooling_compute_x86 X86 basic SRCS sequence_topk_av
...
@@ -63,6 +63,7 @@ add_kernel(sequence_topk_avg_pooling_compute_x86 X86 basic SRCS sequence_topk_av
add_kernel
(
search_fc_compute_x86 X86 basic SRCS search_fc_compute.cc DEPS
${
lite_kernel_deps
}
search_fc
)
add_kernel
(
search_fc_compute_x86 X86 basic SRCS search_fc_compute.cc DEPS
${
lite_kernel_deps
}
search_fc
)
add_kernel
(
matmul_compute_x86 X86 basic SRCS matmul_compute.cc DEPS
${
lite_kernel_deps
}
blas
)
add_kernel
(
matmul_compute_x86 X86 basic SRCS matmul_compute.cc DEPS
${
lite_kernel_deps
}
blas
)
add_kernel
(
yolo_box_compute_x86 X86 basic SRCS yolo_box_compute.cc DEPS
${
lite_kernel_deps
}
)
lite_cc_test
(
test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86
)
lite_cc_test
(
test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86
)
lite_cc_test
(
test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86
)
lite_cc_test
(
test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86
)
...
@@ -101,3 +102,5 @@ lite_cc_test(test_var_conv_2d_compute_x86 SRCS var_conv_2d_compute_test.cc DEPS
...
@@ -101,3 +102,5 @@ lite_cc_test(test_var_conv_2d_compute_x86 SRCS var_conv_2d_compute_test.cc DEPS
#lite_cc_test(test_attention_padding_mask_compute_x86 SRCS attention_padding_mask_compute_test.cc DEPS attention_padding_mask_compute_x86)
#lite_cc_test(test_attention_padding_mask_compute_x86 SRCS attention_padding_mask_compute_test.cc DEPS attention_padding_mask_compute_x86)
lite_cc_test
(
test_sequence_arithmetic_compute_x86 SRCS sequence_arithmetic_compute_test.cc DEPS sequence_arithmetic_compute_x86
)
lite_cc_test
(
test_sequence_arithmetic_compute_x86 SRCS sequence_arithmetic_compute_test.cc DEPS sequence_arithmetic_compute_x86
)
lite_cc_test
(
test_leaky_relu_compute_x86 SRCS leaky_relu_compute_test.cc DEPS activation_compute_x86
)
lite_cc_test
(
test_leaky_relu_compute_x86 SRCS leaky_relu_compute_test.cc DEPS activation_compute_x86
)
lite_cc_test
(
test_yolo_box_compute_x86 SRCS yolo_box_compute_test.cc DEPS
yolo_box_compute_x86
)
lite/kernels/x86/yolo_box_compute.cc
0 → 100644
浏览文件 @
2bec4623
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/yolo_box_compute.h"
REGISTER_LITE_KERNEL
(
yolo_box
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
YoloBoxCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"ImgSize"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
),
PRECISION
(
kInt32
))})
.
BindOutput
(
"Boxes"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Scores"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
lite/kernels/x86/yolo_box_compute.h
0 → 100644
浏览文件 @
2bec4623
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Eigen/Core>
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/operators/yolo_box_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
T
sigmoid
(
T
x
)
{
return
1.
f
/
(
1.
f
+
expf
(
-
x
));
}
template
<
typename
T
>
void
get_yolo_box
(
T
*
box
,
const
T
*
x
,
const
int
*
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size
,
int
input_size
,
int
index
,
int
stride
,
int
img_height
,
int
img_width
)
{
box
[
0
]
=
(
i
+
sigmoid
(
x
[
index
]))
*
img_height
/
grid_size
;
box
[
1
]
=
(
j
+
sigmoid
(
x
[
index
+
stride
]))
*
img_height
/
grid_size
;
box
[
2
]
=
std
::
exp
(
x
[
index
+
stride
])
*
anchors
[
2
*
an_idx
]
*
img_width
/
input_size
;
box
[
3
]
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
*
img_height
/
input_size
;
}
inline
int
get_entry_index
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
,
int
entry
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
}
template
<
typename
T
>
void
calc_detection_box
(
T
*
boxes
,
T
*
box
,
const
int
box_idx
,
const
int
img_height
,
const
int
img_width
)
{
boxes
[
box_idx
]
=
box
[
0
]
-
box
[
2
]
/
2
;
boxes
[
box_idx
+
1
]
=
box
[
1
]
-
box
[
3
]
/
2
;
boxes
[
box_idx
+
2
]
=
box
[
0
]
+
box
[
2
]
/
2
;
boxes
[
box_idx
+
3
]
=
box
[
1
]
+
box
[
3
]
/
2
;
boxes
[
box_idx
]
=
boxes
[
box_idx
]
>
0
?
boxes
[
box_idx
]
:
static_cast
<
float
>
(
0
);
boxes
[
box_idx
+
1
]
=
boxes
[
box_idx
+
1
]
>
0
?
boxes
[
box_idx
+
1
]
:
static_cast
<
float
>
(
0
);
boxes
[
box_idx
+
2
]
=
boxes
[
box_idx
+
2
]
<
img_width
-
1
?
boxes
[
box_idx
+
2
]
:
static_cast
<
float
>
(
img_width
-
1
);
boxes
[
box_idx
+
3
]
=
boxes
[
box_idx
+
3
]
<
img_height
-
1
?
boxes
[
box_idx
+
3
]
:
static_cast
<
float
>
(
img_height
-
1
);
}
template
<
typename
T
>
void
calc_label_score
(
T
*
scores
,
const
T
*
input
,
const
int
label_idx
,
const
int
score_idx
,
const
int
class_num
,
const
T
conf
,
const
int
stride
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
scores
[
score_idx
+
i
]
=
conf
*
sigmoid
(
input
[
label_idx
+
i
*
stride
]);
}
}
class
YoloBoxCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
YoloBoxParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
const
int
n
=
param
.
X
->
dims
()[
0
];
const
int
h
=
param
.
X
->
dims
()[
2
];
const
int
w
=
param
.
X
->
dims
()[
3
];
const
int
b_num
=
param
.
Boxes
->
dims
()[
1
];
const
int
an_num
=
param
.
anchors
.
size
()
/
2
;
int
X_size
=
param
.
downsample_ratio
*
h
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
param
.
class_num
+
5
)
*
stride
;
auto
anchors_data
=
param
.
anchors
.
data
();
const
float
*
X_data
=
param
.
X
->
data
<
float
>
();
int
*
ImgSize_data
=
param
.
ImgSize
->
mutable_data
<
int
>
();
float
*
Boxes_data
=
param
.
Boxes
->
mutable_data
<
float
>
();
float
*
Scores_data
=
param
.
Scores
->
mutable_data
<
float
>
();
float
box
[
4
];
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
int
img_height
=
ImgSize_data
[
2
*
i
];
int
img_width
=
ImgSize_data
[
2
*
i
+
1
];
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
obj_idx
=
get_entry_index
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
4
);
float
conf
=
sigmoid
(
X_data
[
obj_idx
]);
if
(
conf
<
param
.
conf_thresh
)
{
continue
;
}
int
box_idx
=
get_entry_index
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
0
);
get_yolo_box
(
box
,
X_data
,
anchors_data
,
l
,
k
,
j
,
h
,
X_size
,
box_idx
,
stride
,
img_height
,
img_width
);
box_idx
=
(
i
*
b_num
+
j
*
stride
+
k
*
w
+
l
)
*
4
;
calc_detection_box
(
Boxes_data
,
box
,
box_idx
,
img_height
,
img_width
);
int
label_idx
=
get_entry_index
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
5
);
int
score_idx
=
(
i
*
b_num
+
j
*
stride
+
k
*
w
+
l
)
*
param
.
class_num
;
calc_label_score
(
Scores_data
,
X_data
,
label_idx
,
score_idx
,
param
.
class_num
,
conf
,
stride
);
}
}
}
}
}
virtual
~
YoloBoxCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/x86/yolo_box_compute_test.cc
0 → 100644
浏览文件 @
2bec4623
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/yolo_box_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
namespace
test
{
float
sigmoid_base
(
float
x
)
{
return
1.
f
/
(
1.
f
+
expf
(
-
x
));
}
void
get_yolo_box_base
(
float
*
box
,
const
float
*
x
,
const
int
*
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size
,
int
input_size
,
int
index
,
int
stride
,
int
img_height
,
int
img_width
)
{
box
[
0
]
=
(
i
+
sigmoid_base
(
x
[
index
]))
*
img_width
/
grid_size
;
box
[
1
]
=
(
j
+
sigmoid_base
(
x
[
index
+
stride
]))
*
img_height
/
grid_size
;
box
[
2
]
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
*
img_width
/
input_size
;
box
[
3
]
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
*
img_height
/
input_size
;
}
int
get_entry_index_base
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
,
int
entry
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
}
void
calc_detection_box_base
(
float
*
boxes
,
float
*
box
,
const
int
box_idx
,
const
int
img_height
,
const
int
img_width
)
{
boxes
[
box_idx
]
=
box
[
0
]
-
box
[
2
]
/
2
;
boxes
[
box_idx
+
1
]
=
box
[
1
]
-
box
[
3
]
/
2
;
boxes
[
box_idx
+
2
]
=
box
[
0
]
+
box
[
2
]
/
2
;
boxes
[
box_idx
+
3
]
=
box
[
1
]
+
box
[
3
]
/
2
;
boxes
[
box_idx
]
=
boxes
[
box_idx
]
>
0
?
boxes
[
box_idx
]
:
static_cast
<
float
>
(
0
);
boxes
[
box_idx
+
1
]
=
boxes
[
box_idx
+
1
]
>
0
?
boxes
[
box_idx
+
1
]
:
static_cast
<
float
>
(
0
);
boxes
[
box_idx
+
2
]
=
boxes
[
box_idx
+
2
]
<
img_width
-
1
?
boxes
[
box_idx
+
2
]
:
static_cast
<
float
>
(
img_width
-
1
);
boxes
[
box_idx
+
3
]
=
boxes
[
box_idx
+
3
]
<
img_height
-
1
?
boxes
[
box_idx
+
3
]
:
static_cast
<
float
>
(
img_height
-
1
);
}
void
calc_label_score_base
(
float
*
scores
,
const
float
*
input
,
const
int
label_idx
,
const
int
score_idx
,
const
int
class_num
,
const
float
conf
,
const
int
stride
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
scores
[
score_idx
+
i
]
=
conf
*
sigmoid_base
(
input
[
label_idx
+
i
*
stride
]);
}
}
void
RunBaseline
(
const
lite
::
Tensor
*
X
,
const
lite
::
Tensor
*
ImgSize
,
lite
::
Tensor
*
Boxes
,
lite
::
Tensor
*
Scores
,
int
class_num
,
float
conf_thresh
,
int
downsample_ratio
,
std
::
vector
<
int
>
anchors
)
{
auto
*
in
=
X
;
auto
*
imgsize
=
ImgSize
;
const
int
n
=
in
->
dims
()[
0
];
const
int
h
=
in
->
dims
()[
2
];
const
int
w
=
in
->
dims
()[
3
];
const
int
an_num
=
anchors
.
size
()
/
2
;
int
in_size
=
downsample_ratio
*
h
;
int
box_num
=
in
->
dims
()[
2
]
*
in
->
dims
()[
3
]
*
an_num
;
Boxes
->
Resize
({
in
->
dims
()[
0
],
box_num
,
4
});
Scores
->
Resize
({
in
->
dims
()[
0
],
box_num
,
class_num
});
auto
*
boxes
=
Boxes
;
auto
*
scores
=
Scores
;
const
int
b_num
=
boxes
->
dims
()[
0
];
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
auto
anchors_data
=
anchors
.
data
();
const
float
*
in_data
=
in
->
data
<
float
>
();
const
int
*
imgsize_data
=
imgsize
->
data
<
int
>
();
float
*
boxes_data
=
boxes
->
mutable_data
<
float
>
();
float
*
scores_data
=
scores
->
mutable_data
<
float
>
();
float
box
[
4
];
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
int
img_height
=
imgsize_data
[
2
*
i
];
int
img_width
=
imgsize_data
[
2
*
i
+
1
];
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
obj_idx
=
test
::
get_entry_index_base
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
4
);
float
conf
=
test
::
sigmoid_base
(
in_data
[
obj_idx
]);
if
(
conf
<
conf_thresh
)
{
continue
;
}
int
box_idx
=
test
::
get_entry_index_base
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
0
);
test
::
get_yolo_box_base
(
box
,
in_data
,
anchors_data
,
l
,
k
,
j
,
h
,
in_size
,
box_idx
,
stride
,
img_height
,
img_width
);
box_idx
=
(
i
*
b_num
+
j
*
stride
+
k
*
w
+
l
)
*
4
;
test
::
calc_detection_box_base
(
boxes_data
,
box
,
box_idx
,
img_height
,
img_width
);
int
label_idx
=
test
::
get_entry_index_base
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
5
);
int
score_idx
=
(
i
*
b_num
+
j
*
stride
+
k
*
w
+
l
)
*
class_num
;
test
::
calc_label_score_base
(
scores_data
,
in_data
,
label_idx
,
score_idx
,
class_num
,
conf
,
stride
);
}
}
}
}
}
}
// namespace test
TEST
(
yolo_box_x86
,
retrive_op
)
{
auto
yolo_box
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
(
"yolo_box"
);
ASSERT_FALSE
(
yolo_box
.
empty
());
ASSERT_TRUE
(
yolo_box
.
front
());
}
TEST
(
yolo_box_x86
,
init
)
{
YoloBoxCompute
<
float
>
yolo_box
;
ASSERT_EQ
(
yolo_box
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
yolo_box
.
target
(),
TARGET
(
kX86
));
}
TEST
(
yolo_box_x86
,
run_test
)
{
lite
::
Tensor
X
,
ImgSize
,
Boxes
,
Scores
,
Boxes_base
,
Scores_base
;
YoloBoxCompute
<
float
>
yolo_box
;
operators
::
YoloBoxParam
param
;
int
s
=
3
,
cls
=
4
;
int
n
=
1
,
c
=
s
*
(
5
+
cls
),
h
=
16
,
w
=
16
;
param
.
anchors
=
{
2
,
3
,
4
,
5
,
8
,
10
};
param
.
downsample_ratio
=
2
;
param
.
conf_thresh
=
0.5
;
param
.
class_num
=
cls
;
int
m
=
h
*
w
*
param
.
anchors
.
size
()
/
2
;
X
.
Resize
({
n
,
c
,
h
,
w
});
ImgSize
.
Resize
({
1
,
2
});
Boxes
.
Resize
({
n
,
m
,
4
});
Boxes_base
.
Resize
({
n
,
m
,
4
});
Scores
.
Resize
({
n
,
cls
,
m
});
Scores_base
.
Resize
({
n
,
cls
,
m
});
auto
x_data
=
X
.
mutable_data
<
float
>
();
auto
imgsize_data
=
ImgSize
.
mutable_data
<
float
>
();
auto
boxes_data
=
Boxes
.
mutable_data
<
float
>
();
auto
scores_data
=
Scores
.
mutable_data
<
float
>
();
auto
boxes_base_data
=
Boxes_base
.
mutable_data
<
float
>
();
auto
scores_base_data
=
Scores_base
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
X
.
dims
().
production
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
for
(
int
i
=
0
;
i
<
ImgSize
.
dims
().
production
();
i
++
)
{
imgsize_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
test
::
RunBaseline
(
&
X
,
&
ImgSize
,
&
Boxes_base
,
&
Scores_base
,
param
.
class_num
,
param
.
conf_thresh
,
param
.
downsample_ratio
,
param
.
anchors
);
param
.
X
=
&
X
;
param
.
ImgSize
=
&
ImgSize
;
param
.
Boxes
=
&
Boxes
;
param
.
Scores
=
&
Scores
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
X86Context
>
();
yolo_box
.
SetContext
(
std
::
move
(
ctx
));
yolo_box
.
SetParam
(
std
::
move
(
param
));
yolo_box
.
Run
();
for
(
int
i
=
0
;
i
<
Boxes
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
boxes_data
[
i
],
boxes_base_data
[
i
],
1e-5
);
}
for
(
int
i
=
0
;
i
<
Scores
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
scores_data
[
i
],
scores_base_data
[
i
],
1e-5
);
}
}
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
yolo_box
,
kX86
,
kFloat
,
kNCHW
,
def
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录