提交 253cdb2a 编写于 作者: E eclipsess

add concat and concat_test

上级 e6459329
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "concat_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void ConcatOp<Dtype, T>::InferShape() const {
auto inputs = param_.Inputs();
const size_t n = inputs.size();
std::vector<DDim> inputs_dims;
inputs_dims.reserve(n);
for (int i = 0; i < n; i++) {
inputs_dims.push_back(inputs[i]->dims());
}
auto axis = static_cast<size_t>(param_.Axis());
if (n == 1) {
DLOG << "Warning: concat op have only one input, "
"may waste memory";
}
/// add all dim[axis] and check other dims if equal.
auto out_dims = inputs_dims[0];
int in_zero_dims_size = out_dims.size();
for (size_t i = 1; i < n; i++) {
for (size_t j = 0; j < in_zero_dims_size; j++) {
if (j == axis) {
out_dims[axis] += inputs_dims[i][j];
} else {
assert(out_dims[j] == inputs_dims[i][j]);
}
}
}
if (out_dims[axis] < 0) {
out_dims[axis] = -1;
}
param_.Out()->Resize(out_dims);
}
template class ConcatOp<CPU, float>;
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "framework/operator.h"
#include "operators/kernel/concat_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T>
class ConcatOp : public framework::OperatorWithKernel<DeviceType> {
public:
ConcatOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType>(type, inputs, outputs,
attrs, scope),
param_(inputs, outputs, attrs, *scope) {}
void Run() const {
operators::ConcatKernel<DeviceType, T> kernel;
kernel.Compute(param_);
}
using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel;
void InferShape() const override;
protected:
ConcatParam param_;
};
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "operators/kernel/concat_kernel.h"
namespace paddle_mobile {
namespace operators {
template <typename T> class ConcatFunctor {
public:
void operator()(const std::vector<framework::Tensor> &input, const int axis,
framework::Tensor *output) {
size_t num = input.size();
int rows = 1;
auto dim_0 = input[0].dims();
for (int i = 0; i < axis; ++i) {
rows *= dim_0[i];
}
int out_rows = rows, out_cols = 0;
std::vector<int64_t> input_cols(input.size());
for (int i = 0; i < num; ++i) {
int t_cols = input[i].numel() / rows;
out_cols += t_cols;
input_cols[i] = t_cols;
}
// computation
for (int k = 0; k < out_rows; ++k) {
T *dst_ptr = output->data<T>() + k * out_cols;
int col_idx = 0;
for (int j = 0; j < num; ++j) {
int col_len = input_cols[j];
const T *src_prt = input[j].data<T>() + k * col_len;
memory::Copy(dst_ptr + col_idx, src_prt, sizeof(T) * col_len);
col_idx += col_len;
}
}
}
};
template <typename T>
void StridedNumelCopyWithAxis(int64_t axis, T *dst,
const framework::DDim &dst_stride_numel,
const T *src,
const framework::DDim &src_stride_numel,
int64_t size) {
int64_t before = dst_stride_numel[0] / dst_stride_numel[axis];
int64_t src_after = src_stride_numel[axis];
int64_t dst_after = dst_stride_numel[axis];
///"src and dst tensor should have the same dims size."
assert(src_stride_numel.size() == dst_stride_numel.size());
for (int64_t i = 0; i < axis; ++i) {
if (i < axis) {
/// src and dst should have the same elements
/// except the specified axis.
assert(src_stride_numel[i] / src_stride_numel[axis] ==
dst_stride_numel[i] / dst_stride_numel[axis]);
} else if (i == axis) {
continue;
} else {
/// "src and dst should have the same elements "
/// "except the specified axis."
assert(src_stride_numel[i] == dst_stride_numel[i]);
}
}
for (int64_t i = 0; i < before; ++i) {
memory::Copy(dst + i * dst_after, src + i * src_after,
sizeof(T) * size);
}
}
template <>
void ConcatKernel<CPU, float>::Compute(const ConcatParam &param) const {
auto inputs = param.Inputs();
auto *out = param.Out();
int64_t axis = param.Axis();
out->mutable_data<float>();
/// Sometimes direct copies will be faster, this maybe need deeply analysis.
if (axis == 0 && inputs.size() < 10) {
size_t output_offset = 0;
for (auto *in : inputs) {
auto in_stride = framework::stride_numel(in->dims());
auto out_stride = framework::stride_numel(out->dims());
StridedNumelCopyWithAxis<float>(
axis, out->data<float>() + output_offset, out_stride,
in->data<float>(), in_stride, in_stride[axis]);
output_offset += in_stride[axis];
}
} else {
std::vector<framework::Tensor> inputs_concat(inputs.size());
for (int j = 0; j < inputs.size(); ++j) {
inputs_concat[j] = *inputs[j];
}
ConcatFunctor<float> concat_functor;
concat_functor(inputs_concat, static_cast<int>(axis), out);
}
}
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T>
class ConcatKernel : public framework::OpKernelBase<DeviceType, ConcatParam> {
public:
void Compute(const ConcatParam &param) const;
};
} // namespace operators
} // namespace paddle_mobile
......@@ -51,7 +51,7 @@ class OpParam : PaddleMobileObject {
template <typename T>
static std::vector<T *> InputMultiFrom(const VariableNameMap &inputs,
const Scope &scope) {
return GetMultiVarValue<T>("Input", inputs, scope);
return GetMultiVarValue<T>("X", inputs, scope);
}
template <typename T>
......@@ -70,15 +70,15 @@ class OpParam : PaddleMobileObject {
}
template <typename T>
static const T GetAttr(std::string key, const AttributeMap &map) {
static const T GetAttr(const std::string &key, const AttributeMap &map) {
return ((Attribute)map.at(key)).Get<T>();
}
template <typename T>
static T *GetVarValue(std::string key, const VariableNameMap &var_map,
const Scope &scope) {
static T *GetVarValue(const std::string &key,
const VariableNameMap &var_map, const Scope &scope) {
auto var_vec = var_map.at(key);
if (var_vec.size()) {
if (!var_vec.empty()) {
// std::cout << " get var value -- " << var_vec[0] <<
// std::endl;
auto var = scope.FindVar(var_vec[0]);
......@@ -89,7 +89,7 @@ class OpParam : PaddleMobileObject {
}
template <typename T>
static std::vector<T *> GetMultiVarValue(std::string key,
static std::vector<T *> GetMultiVarValue(const std::string &key,
const VariableNameMap &var_map,
const Scope &scope) {
auto var_vecs = var_map.at(key);
......
......@@ -11,6 +11,9 @@ target_link_libraries(test-mul-op paddle-mobile)
ADD_EXECUTABLE(test-elementwiseadd-op operators/test_elementwise_add_op.cpp test_helper.h test_include.h)
target_link_libraries(test-elementwiseadd-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-concat-op operators/test_concat_op.cpp test_helper.h test_include.h)
target_link_libraries(test-concat-op paddle-mobile)
# gen test log
ADD_EXECUTABLE(test-log common/test_log.cpp)
......
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "../test_include.h"
#include "operators/concat_op.h"
namespace paddle_mobile {
namespace framework {
template <typename Dtype> class TestConcatOp {
public:
explicit TestConcatOp(const Program<Dtype> p) : program_(p) {
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
to_predict_program_ = program_.originProgram;
}
const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks();
// DLOG << " **block size " << blocks.size();
for (int i = 0; i < blocks.size(); ++i) {
std::shared_ptr<BlockDesc> block_desc = blocks[i];
std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
// DLOG << " ops " << ops.size();
for (int j = 0; j < ops.size(); ++j) {
std::shared_ptr<OpDesc> op = ops[j];
// if (op->Type() == "mul") {
// DLOG << "x_num_col_dims :
// "
// << op->GetAttrMap()
// .at("x_num_col_dims")
// .Get<int>();
// DLOG << "y_num_col_dims :
// "
// << op->GetAttrMap()
// .at("y_num_col_dims")
// .Get<int>();
// DLOG << " Input X is : "
// << op->Input("X")[0];
// }
// DLOG << "op:" << op->Type();
if (op->Type() == "concat" &&
op->Input("X")[0] == "conv2d_3.tmp_1") {
DLOG << " mul attr size: " << op->GetAttrMap().size();
DLOG << " inputs size: " << op->GetInputs().size();
DLOG << " outputs size: " << op->GetOutputs().size();
DLOG << " Input X is : " << op->Input("X")[0];
DLOG << " Output Out is : " << op->Output("Out")[0];
DLOG << " axis : "
<< op->GetAttrMap().at("axis").Get<int>();
std::shared_ptr<operators::ConcatOp<Dtype, float>> concat =
std::make_shared<operators::ConcatOp<Dtype, float>>(
op->Type(), op->GetInputs(), op->GetOutputs(),
op->GetAttrMap(), program_.scope);
ops_of_block_[*block_desc.get()].push_back(concat);
}
}
}
}
std::shared_ptr<Tensor> predict_concat(Tensor &t1, Tensor &t2, Tensor &t3,
Tensor &t4) {
// feed
auto scope = program_.scope;
Variable *x1_feed_value = scope->Var("conv2d_3.tmp_1");
auto tensor_x1 = x1_feed_value->GetMutable<Tensor>();
tensor_x1->ShareDataWith(t1);
Variable *x2_feed_value = scope->Var("conv2d_5.tmp_1");
auto tensor_x2 = x2_feed_value->GetMutable<Tensor>();
tensor_x2->ShareDataWith(t2);
Variable *x3_feed_value = scope->Var("conv2d_7.tmp_1");
auto tensor_x3 = x3_feed_value->GetMutable<Tensor>();
tensor_x3->ShareDataWith(t3);
Variable *x4_feed_value = scope->Var("conv2d_8.tmp_1");
auto tensor_x4 = x4_feed_value->GetMutable<Tensor>();
tensor_x4->ShareDataWith(t4);
Variable *con_output = scope->Var("concat_0.tmp_0");
auto *output_tensor = con_output->GetMutable<Tensor>();
output_tensor->mutable_data<float>({4, 100, 2, 2});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
predict_concat(t1, t2, t3, t4, 0);
return out_tensor;
}
private:
const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_;
std::map<framework::BlockDesc,
std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_;
bool use_optimize_ = false;
void predict_concat(const Tensor &t1, const Tensor &t2, const Tensor &t3,
const Tensor &t4, int block_id) {
std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size();
++j) {
auto op = ops_of_block_[*to_predict_block.get()][j];
DLOG << "op -> run()";
op->Run();
}
}
};
template class TestConcatOp<CPU>;
} // namespace framework
} // namespace paddle_mobile
int main() {
DLOG << "----------**********----------";
DLOG << "begin to run MulOp Test";
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program = loader.Load(std::string("../../test/models/googlenet"));
/// input x (3,2,1,1)
paddle_mobile::framework::Tensor inputx1;
SetupTensor<float>(&inputx1, {4, 10, 2, 2}, static_cast<float>(0),
static_cast<float>(1));
auto *inputx1_ptr = inputx1.data<float>();
/// input x (3,2,1,1)
paddle_mobile::framework::Tensor inputx2;
SetupTensor<float>(&inputx2, {4, 20, 2, 2}, static_cast<float>(0),
static_cast<float>(1));
auto *inputx2_ptr = inputx2.data<float>();
/// input x (3,2,1,1)
paddle_mobile::framework::Tensor inputx3;
SetupTensor<float>(&inputx3, {4, 30, 2, 2}, static_cast<float>(0),
static_cast<float>(1));
auto *inputx3_ptr = inputx3.data<float>();
/// input x (3,2,1,1)
paddle_mobile::framework::Tensor inputx4;
SetupTensor<float>(&inputx4, {4, 40, 2, 2}, static_cast<float>(0),
static_cast<float>(1));
auto *inputx4_ptr = inputx4.data<float>();
paddle_mobile::framework::TestConcatOp<paddle_mobile::CPU> testConcatOp(
program);
auto output_concat =
testConcatOp.predict_concat(inputx1, inputx2, inputx3, inputx4);
auto *output_concat_ptr = output_concat->data<float>();
int input_n = 1;
int input_c = 2;
int input_h = 0;
int input_w = 1;
int stride0 = inputx3.numel() / inputx3.dims()[0];
int stride1 = inputx3.numel() / inputx3.dims()[0] / inputx3.dims()[1];
int stride2 = inputx3.dims()[3];
/// inputx1 (4,10,2,2),
/// inputx2 (4,20,2,2),
/// inputx3 (4,30,2,2),
/// inputx4 (4,40,2,2),
/// axis = 1
/// output (4,100,2,2)
int input_index =
input_n * stride0 + input_c * stride1 + input_h * stride2 + input_w;
int output_index =
input_n * 100 * 2 * 2 +
(input_c + inputx1.dims()[1] + inputx2.dims()[1]) * 2 * 2 +
input_h * 2 + input_w;
DLOG << " inputx3[1,2,0,1] = " << inputx3_ptr[input_index];
DLOG << " output[1,12,0,1] = " << output_concat_ptr[output_index];
return 0;
}
......@@ -25,7 +25,7 @@ namespace framework {
template <typename Dtype> class TestElementwiseAddOp {
public:
TestElementwiseAddOp(const Program<Dtype> p) : program_(p) {
explicit TestElementwiseAddOp(const Program<Dtype> p) : program_(p) {
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
......@@ -89,7 +89,7 @@ template <typename Dtype> class TestElementwiseAddOp {
tensor_y->ShareDataWith(t2);
Variable *con_output = scope->Var("elementwise_add_0.tmp_0");
Tensor *output_tensor = con_output->GetMutable<Tensor>();
auto *output_tensor = con_output->GetMutable<Tensor>();
output_tensor->mutable_data<float>({1, 3, 224, 224});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
......@@ -129,25 +129,25 @@ int main() {
DLOG << "begin to run ElementAddOp Test";
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program =
loader.Load(std::string("../../../test/models/"
loader.Load(std::string("../../test/models/"
"image_classification_resnet.inference.model"));
/// input x (1,3,224,224)
paddle_mobile::framework::Tensor inputx;
SetupTensor<float>(&inputx, {1, 3, 224, 224}, static_cast<float>(0),
static_cast<float>(1));
float *inputx_ptr = inputx.data<float>();
auto *inputx_ptr = inputx.data<float>();
/// input y (224,)
paddle_mobile::framework::Tensor inputy;
SetupTensor<float>(&inputy, {224}, static_cast<float>(0),
static_cast<float>(1));
float *inputy_ptr = inputy.data<float>();
auto *inputy_ptr = inputy.data<float>();
paddle_mobile::framework::TestElementwiseAddOp<paddle_mobile::CPU>
testElementwiseAddOp(program);
auto output_add = testElementwiseAddOp.predict_add(inputx, inputy);
float *output_add_ptr = output_add->data<float>();
auto *output_add_ptr = output_add->data<float>();
// for (int j = 0; j < output_add->numel(); ++j) {
// DLOG << "value of output: " << output_add_ptr[j];
// }
......
......@@ -25,7 +25,7 @@ namespace framework {
template <typename Dtype> class TestMulOp {
public:
TestMulOp(const Program<Dtype> p) : program_(p) {
explicit TestMulOp(const Program<Dtype> p) : program_(p) {
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
......@@ -69,17 +69,17 @@ template <typename Dtype> class TestMulOp {
DLOG << "y_num_col_dims : "
<< op->GetAttrMap().at("y_num_col_dims").Get<int>();
std::shared_ptr<operators::MulOp<Dtype, float>> add =
std::shared_ptr<operators::MulOp<Dtype, float>> mul =
std::make_shared<operators::MulOp<Dtype, float>>(
op->Type(), op->GetInputs(), op->GetOutputs(),
op->GetAttrMap(), program_.scope);
ops_of_block_[*block_desc.get()].push_back(add);
ops_of_block_[*block_desc.get()].push_back(mul);
}
}
}
}
std::shared_ptr<Tensor> predict_add(Tensor &t1, Tensor &t2) {
std::shared_ptr<Tensor> predict_mul(Tensor &t1, Tensor &t2) {
// feed
auto scope = program_.scope;
Variable *x_feed_value = scope->Var("pool2d_0.tmp_0");
......@@ -91,7 +91,7 @@ template <typename Dtype> class TestMulOp {
tensor_y->ShareDataWith(t2);
Variable *con_output = scope->Var("fc_0.tmp_0");
Tensor *output_tensor = con_output->GetMutable<Tensor>();
auto *output_tensor = con_output->GetMutable<Tensor>();
output_tensor->mutable_data<float>({3, 3});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
......@@ -99,7 +99,7 @@ template <typename Dtype> class TestMulOp {
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
predict_add(t1, t2, 0);
predict_mul(t1, t2, 0);
return out_tensor;
}
......@@ -111,7 +111,7 @@ template <typename Dtype> class TestMulOp {
ops_of_block_;
bool use_optimize_ = false;
void predict_add(const Tensor &t1, const Tensor &t2, int block_id) {
void predict_mul(const Tensor &t1, const Tensor &t2, int block_id) {
std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size();
......@@ -132,25 +132,25 @@ int main() {
DLOG << "begin to run MulOp Test";
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program =
loader.Load(std::string("../../../test/models/"
loader.Load(std::string("../../test/models/"
"image_classification_resnet.inference.model"));
/// input x (3,2,1,1)
paddle_mobile::framework::Tensor inputx;
SetupTensor<float>(&inputx, {3, 2, 1, 1}, static_cast<float>(0),
static_cast<float>(1));
float *inputx_ptr = inputx.data<float>();
auto *inputx_ptr = inputx.data<float>();
/// input y (2,3)
paddle_mobile::framework::Tensor inputy;
SetupTensor<float>(&inputy, {2, 3}, static_cast<float>(0),
static_cast<float>(1));
float *inputy_ptr = inputy.data<float>();
auto *inputy_ptr = inputy.data<float>();
paddle_mobile::framework::TestMulOp<paddle_mobile::CPU> testMulOp(program);
auto output_mul = testMulOp.predict_add(inputx, inputy);
float *output_mul_ptr = output_mul->data<float>();
auto output_mul = testMulOp.predict_mul(inputx, inputy);
auto *output_mul_ptr = output_mul->data<float>();
auto dimx_1 = inputx.numel() / inputx.dims()[0];
DLOG << " inputx : ";
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册