Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
253cdb2a
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
253cdb2a
编写于
5月 19, 2018
作者:
E
eclipsess
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add concat and concat_test
上级
e6459329
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
489 addition
and
24 deletion
+489
-24
src/operators/concat_op.cpp
src/operators/concat_op.cpp
+64
-0
src/operators/concat_op.h
src/operators/concat_op.h
+51
-0
src/operators/kernel/arm/concat_kernel.cpp
src/operators/kernel/arm/concat_kernel.cpp
+117
-0
src/operators/kernel/concat_kernel.h
src/operators/kernel/concat_kernel.h
+34
-0
src/operators/op_param.h
src/operators/op_param.h
+6
-6
test/CMakeLists.txt
test/CMakeLists.txt
+3
-0
test/operators/test_concat_op.cpp
test/operators/test_concat_op.cpp
+196
-0
test/operators/test_elementwise_add_op.cpp
test/operators/test_elementwise_add_op.cpp
+6
-6
test/operators/test_mul_op.cpp
test/operators/test_mul_op.cpp
+12
-12
未找到文件。
src/operators/concat_op.cpp
0 → 100644
浏览文件 @
253cdb2a
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "concat_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
ConcatOp
<
Dtype
,
T
>::
InferShape
()
const
{
auto
inputs
=
param_
.
Inputs
();
const
size_t
n
=
inputs
.
size
();
std
::
vector
<
DDim
>
inputs_dims
;
inputs_dims
.
reserve
(
n
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
inputs_dims
.
push_back
(
inputs
[
i
]
->
dims
());
}
auto
axis
=
static_cast
<
size_t
>
(
param_
.
Axis
());
if
(
n
==
1
)
{
DLOG
<<
"Warning: concat op have only one input, "
"may waste memory"
;
}
/// add all dim[axis] and check other dims if equal.
auto
out_dims
=
inputs_dims
[
0
];
int
in_zero_dims_size
=
out_dims
.
size
();
for
(
size_t
i
=
1
;
i
<
n
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
in_zero_dims_size
;
j
++
)
{
if
(
j
==
axis
)
{
out_dims
[
axis
]
+=
inputs_dims
[
i
][
j
];
}
else
{
assert
(
out_dims
[
j
]
==
inputs_dims
[
i
][
j
]);
}
}
}
if
(
out_dims
[
axis
]
<
0
)
{
out_dims
[
axis
]
=
-
1
;
}
param_
.
Out
()
->
Resize
(
out_dims
);
}
template
class
ConcatOp
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
src/operators/concat_op.h
0 → 100644
浏览文件 @
253cdb2a
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "framework/operator.h"
#include "operators/kernel/concat_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
namespace
framework
;
template
<
typename
DeviceType
,
typename
T
>
class
ConcatOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
>
{
public:
ConcatOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
>
(
type
,
inputs
,
outputs
,
attrs
,
scope
),
param_
(
inputs
,
outputs
,
attrs
,
*
scope
)
{}
void
Run
()
const
{
operators
::
ConcatKernel
<
DeviceType
,
T
>
kernel
;
kernel
.
Compute
(
param_
);
}
using
framework
::
OperatorWithKernel
<
DeviceType
>::
OperatorWithKernel
;
void
InferShape
()
const
override
;
protected:
ConcatParam
param_
;
};
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/arm/concat_kernel.cpp
0 → 100644
浏览文件 @
253cdb2a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "operators/kernel/concat_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
class
ConcatFunctor
{
public:
void
operator
()(
const
std
::
vector
<
framework
::
Tensor
>
&
input
,
const
int
axis
,
framework
::
Tensor
*
output
)
{
size_t
num
=
input
.
size
();
int
rows
=
1
;
auto
dim_0
=
input
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
rows
*=
dim_0
[
i
];
}
int
out_rows
=
rows
,
out_cols
=
0
;
std
::
vector
<
int64_t
>
input_cols
(
input
.
size
());
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
int
t_cols
=
input
[
i
].
numel
()
/
rows
;
out_cols
+=
t_cols
;
input_cols
[
i
]
=
t_cols
;
}
// computation
for
(
int
k
=
0
;
k
<
out_rows
;
++
k
)
{
T
*
dst_ptr
=
output
->
data
<
T
>
()
+
k
*
out_cols
;
int
col_idx
=
0
;
for
(
int
j
=
0
;
j
<
num
;
++
j
)
{
int
col_len
=
input_cols
[
j
];
const
T
*
src_prt
=
input
[
j
].
data
<
T
>
()
+
k
*
col_len
;
memory
::
Copy
(
dst_ptr
+
col_idx
,
src_prt
,
sizeof
(
T
)
*
col_len
);
col_idx
+=
col_len
;
}
}
}
};
template
<
typename
T
>
void
StridedNumelCopyWithAxis
(
int64_t
axis
,
T
*
dst
,
const
framework
::
DDim
&
dst_stride_numel
,
const
T
*
src
,
const
framework
::
DDim
&
src_stride_numel
,
int64_t
size
)
{
int64_t
before
=
dst_stride_numel
[
0
]
/
dst_stride_numel
[
axis
];
int64_t
src_after
=
src_stride_numel
[
axis
];
int64_t
dst_after
=
dst_stride_numel
[
axis
];
///"src and dst tensor should have the same dims size."
assert
(
src_stride_numel
.
size
()
==
dst_stride_numel
.
size
());
for
(
int64_t
i
=
0
;
i
<
axis
;
++
i
)
{
if
(
i
<
axis
)
{
/// src and dst should have the same elements
/// except the specified axis.
assert
(
src_stride_numel
[
i
]
/
src_stride_numel
[
axis
]
==
dst_stride_numel
[
i
]
/
dst_stride_numel
[
axis
]);
}
else
if
(
i
==
axis
)
{
continue
;
}
else
{
/// "src and dst should have the same elements "
/// "except the specified axis."
assert
(
src_stride_numel
[
i
]
==
dst_stride_numel
[
i
]);
}
}
for
(
int64_t
i
=
0
;
i
<
before
;
++
i
)
{
memory
::
Copy
(
dst
+
i
*
dst_after
,
src
+
i
*
src_after
,
sizeof
(
T
)
*
size
);
}
}
template
<
>
void
ConcatKernel
<
CPU
,
float
>::
Compute
(
const
ConcatParam
&
param
)
const
{
auto
inputs
=
param
.
Inputs
();
auto
*
out
=
param
.
Out
();
int64_t
axis
=
param
.
Axis
();
out
->
mutable_data
<
float
>
();
/// Sometimes direct copies will be faster, this maybe need deeply analysis.
if
(
axis
==
0
&&
inputs
.
size
()
<
10
)
{
size_t
output_offset
=
0
;
for
(
auto
*
in
:
inputs
)
{
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
StridedNumelCopyWithAxis
<
float
>
(
axis
,
out
->
data
<
float
>
()
+
output_offset
,
out_stride
,
in
->
data
<
float
>
(),
in_stride
,
in_stride
[
axis
]);
output_offset
+=
in_stride
[
axis
];
}
}
else
{
std
::
vector
<
framework
::
Tensor
>
inputs_concat
(
inputs
.
size
());
for
(
int
j
=
0
;
j
<
inputs
.
size
();
++
j
)
{
inputs_concat
[
j
]
=
*
inputs
[
j
];
}
ConcatFunctor
<
float
>
concat_functor
;
concat_functor
(
inputs_concat
,
static_cast
<
int
>
(
axis
),
out
);
}
}
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/concat_kernel.h
0 → 100644
浏览文件 @
253cdb2a
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
namespace
framework
;
template
<
typename
DeviceType
,
typename
T
>
class
ConcatKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
ConcatParam
>
{
public:
void
Compute
(
const
ConcatParam
&
param
)
const
;
};
}
// namespace operators
}
// namespace paddle_mobile
src/operators/op_param.h
浏览文件 @
253cdb2a
...
...
@@ -51,7 +51,7 @@ class OpParam : PaddleMobileObject {
template
<
typename
T
>
static
std
::
vector
<
T
*>
InputMultiFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetMultiVarValue
<
T
>
(
"
Input
"
,
inputs
,
scope
);
return
GetMultiVarValue
<
T
>
(
"
X
"
,
inputs
,
scope
);
}
template
<
typename
T
>
...
...
@@ -70,15 +70,15 @@ class OpParam : PaddleMobileObject {
}
template
<
typename
T
>
static
const
T
GetAttr
(
std
::
string
key
,
const
AttributeMap
&
map
)
{
static
const
T
GetAttr
(
const
std
::
string
&
key
,
const
AttributeMap
&
map
)
{
return
((
Attribute
)
map
.
at
(
key
)).
Get
<
T
>
();
}
template
<
typename
T
>
static
T
*
GetVarValue
(
std
::
string
key
,
const
VariableNameMap
&
var_map
,
const
Scope
&
scope
)
{
static
T
*
GetVarValue
(
const
std
::
string
&
key
,
const
VariableNameMap
&
var_map
,
const
Scope
&
scope
)
{
auto
var_vec
=
var_map
.
at
(
key
);
if
(
var_vec
.
size
())
{
if
(
!
var_vec
.
empty
())
{
// std::cout << " get var value -- " << var_vec[0] <<
// std::endl;
auto
var
=
scope
.
FindVar
(
var_vec
[
0
]);
...
...
@@ -89,7 +89,7 @@ class OpParam : PaddleMobileObject {
}
template
<
typename
T
>
static
std
::
vector
<
T
*>
GetMultiVarValue
(
std
::
string
key
,
static
std
::
vector
<
T
*>
GetMultiVarValue
(
const
std
::
string
&
key
,
const
VariableNameMap
&
var_map
,
const
Scope
&
scope
)
{
auto
var_vecs
=
var_map
.
at
(
key
);
...
...
test/CMakeLists.txt
浏览文件 @
253cdb2a
...
...
@@ -11,6 +11,9 @@ target_link_libraries(test-mul-op paddle-mobile)
ADD_EXECUTABLE
(
test-elementwiseadd-op operators/test_elementwise_add_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-elementwiseadd-op paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-concat-op operators/test_concat_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-concat-op paddle-mobile
)
# gen test log
ADD_EXECUTABLE
(
test-log common/test_log.cpp
)
...
...
test/operators/test_concat_op.cpp
0 → 100644
浏览文件 @
253cdb2a
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "../test_include.h"
#include "operators/concat_op.h"
namespace
paddle_mobile
{
namespace
framework
{
template
<
typename
Dtype
>
class
TestConcatOp
{
public:
explicit
TestConcatOp
(
const
Program
<
Dtype
>
p
)
:
program_
(
p
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
to_predict_program_
=
program_
.
originProgram
;
}
const
std
::
vector
<
std
::
shared_ptr
<
BlockDesc
>>
blocks
=
to_predict_program_
->
Blocks
();
// DLOG << " **block size " << blocks.size();
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
std
::
shared_ptr
<
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
vector
<
std
::
shared_ptr
<
OpDesc
>>
ops
=
block_desc
->
Ops
();
// DLOG << " ops " << ops.size();
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
OpDesc
>
op
=
ops
[
j
];
// if (op->Type() == "mul") {
// DLOG << "x_num_col_dims :
// "
// << op->GetAttrMap()
// .at("x_num_col_dims")
// .Get<int>();
// DLOG << "y_num_col_dims :
// "
// << op->GetAttrMap()
// .at("y_num_col_dims")
// .Get<int>();
// DLOG << " Input X is : "
// << op->Input("X")[0];
// }
// DLOG << "op:" << op->Type();
if
(
op
->
Type
()
==
"concat"
&&
op
->
Input
(
"X"
)[
0
]
==
"conv2d_3.tmp_1"
)
{
DLOG
<<
" mul attr size: "
<<
op
->
GetAttrMap
().
size
();
DLOG
<<
" inputs size: "
<<
op
->
GetInputs
().
size
();
DLOG
<<
" outputs size: "
<<
op
->
GetOutputs
().
size
();
DLOG
<<
" Input X is : "
<<
op
->
Input
(
"X"
)[
0
];
DLOG
<<
" Output Out is : "
<<
op
->
Output
(
"Out"
)[
0
];
DLOG
<<
" axis : "
<<
op
->
GetAttrMap
().
at
(
"axis"
).
Get
<
int
>
();
std
::
shared_ptr
<
operators
::
ConcatOp
<
Dtype
,
float
>>
concat
=
std
::
make_shared
<
operators
::
ConcatOp
<
Dtype
,
float
>>
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
concat
);
}
}
}
}
std
::
shared_ptr
<
Tensor
>
predict_concat
(
Tensor
&
t1
,
Tensor
&
t2
,
Tensor
&
t3
,
Tensor
&
t4
)
{
// feed
auto
scope
=
program_
.
scope
;
Variable
*
x1_feed_value
=
scope
->
Var
(
"conv2d_3.tmp_1"
);
auto
tensor_x1
=
x1_feed_value
->
GetMutable
<
Tensor
>
();
tensor_x1
->
ShareDataWith
(
t1
);
Variable
*
x2_feed_value
=
scope
->
Var
(
"conv2d_5.tmp_1"
);
auto
tensor_x2
=
x2_feed_value
->
GetMutable
<
Tensor
>
();
tensor_x2
->
ShareDataWith
(
t2
);
Variable
*
x3_feed_value
=
scope
->
Var
(
"conv2d_7.tmp_1"
);
auto
tensor_x3
=
x3_feed_value
->
GetMutable
<
Tensor
>
();
tensor_x3
->
ShareDataWith
(
t3
);
Variable
*
x4_feed_value
=
scope
->
Var
(
"conv2d_8.tmp_1"
);
auto
tensor_x4
=
x4_feed_value
->
GetMutable
<
Tensor
>
();
tensor_x4
->
ShareDataWith
(
t4
);
Variable
*
con_output
=
scope
->
Var
(
"concat_0.tmp_0"
);
auto
*
output_tensor
=
con_output
->
GetMutable
<
Tensor
>
();
output_tensor
->
mutable_data
<
float
>
({
4
,
100
,
2
,
2
});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
std
::
shared_ptr
<
Tensor
>
out_tensor
=
std
::
make_shared
<
LoDTensor
>
();
out_tensor
.
reset
(
output_tensor
);
predict_concat
(
t1
,
t2
,
t3
,
t4
,
0
);
return
out_tensor
;
}
private:
const
framework
::
Program
<
Dtype
>
program_
;
std
::
shared_ptr
<
ProgramDesc
>
to_predict_program_
;
std
::
map
<
framework
::
BlockDesc
,
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
<
Dtype
>>>>
ops_of_block_
;
bool
use_optimize_
=
false
;
void
predict_concat
(
const
Tensor
&
t1
,
const
Tensor
&
t2
,
const
Tensor
&
t3
,
const
Tensor
&
t4
,
int
block_id
)
{
std
::
shared_ptr
<
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
block_id
);
for
(
int
j
=
0
;
j
<
ops_of_block_
[
*
to_predict_block
.
get
()].
size
();
++
j
)
{
auto
op
=
ops_of_block_
[
*
to_predict_block
.
get
()][
j
];
DLOG
<<
"op -> run()"
;
op
->
Run
();
}
}
};
template
class
TestConcatOp
<
CPU
>;
}
// namespace framework
}
// namespace paddle_mobile
int
main
()
{
DLOG
<<
"----------**********----------"
;
DLOG
<<
"begin to run MulOp Test"
;
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
auto
program
=
loader
.
Load
(
std
::
string
(
"../../test/models/googlenet"
));
/// input x (3,2,1,1)
paddle_mobile
::
framework
::
Tensor
inputx1
;
SetupTensor
<
float
>
(
&
inputx1
,
{
4
,
10
,
2
,
2
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
inputx1_ptr
=
inputx1
.
data
<
float
>
();
/// input x (3,2,1,1)
paddle_mobile
::
framework
::
Tensor
inputx2
;
SetupTensor
<
float
>
(
&
inputx2
,
{
4
,
20
,
2
,
2
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
inputx2_ptr
=
inputx2
.
data
<
float
>
();
/// input x (3,2,1,1)
paddle_mobile
::
framework
::
Tensor
inputx3
;
SetupTensor
<
float
>
(
&
inputx3
,
{
4
,
30
,
2
,
2
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
inputx3_ptr
=
inputx3
.
data
<
float
>
();
/// input x (3,2,1,1)
paddle_mobile
::
framework
::
Tensor
inputx4
;
SetupTensor
<
float
>
(
&
inputx4
,
{
4
,
40
,
2
,
2
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
inputx4_ptr
=
inputx4
.
data
<
float
>
();
paddle_mobile
::
framework
::
TestConcatOp
<
paddle_mobile
::
CPU
>
testConcatOp
(
program
);
auto
output_concat
=
testConcatOp
.
predict_concat
(
inputx1
,
inputx2
,
inputx3
,
inputx4
);
auto
*
output_concat_ptr
=
output_concat
->
data
<
float
>
();
int
input_n
=
1
;
int
input_c
=
2
;
int
input_h
=
0
;
int
input_w
=
1
;
int
stride0
=
inputx3
.
numel
()
/
inputx3
.
dims
()[
0
];
int
stride1
=
inputx3
.
numel
()
/
inputx3
.
dims
()[
0
]
/
inputx3
.
dims
()[
1
];
int
stride2
=
inputx3
.
dims
()[
3
];
/// inputx1 (4,10,2,2),
/// inputx2 (4,20,2,2),
/// inputx3 (4,30,2,2),
/// inputx4 (4,40,2,2),
/// axis = 1
/// output (4,100,2,2)
int
input_index
=
input_n
*
stride0
+
input_c
*
stride1
+
input_h
*
stride2
+
input_w
;
int
output_index
=
input_n
*
100
*
2
*
2
+
(
input_c
+
inputx1
.
dims
()[
1
]
+
inputx2
.
dims
()[
1
])
*
2
*
2
+
input_h
*
2
+
input_w
;
DLOG
<<
" inputx3[1,2,0,1] = "
<<
inputx3_ptr
[
input_index
];
DLOG
<<
" output[1,12,0,1] = "
<<
output_concat_ptr
[
output_index
];
return
0
;
}
test/operators/test_elementwise_add_op.cpp
浏览文件 @
253cdb2a
...
...
@@ -25,7 +25,7 @@ namespace framework {
template
<
typename
Dtype
>
class
TestElementwiseAddOp
{
public:
TestElementwiseAddOp
(
const
Program
<
Dtype
>
p
)
:
program_
(
p
)
{
explicit
TestElementwiseAddOp
(
const
Program
<
Dtype
>
p
)
:
program_
(
p
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
...
...
@@ -89,7 +89,7 @@ template <typename Dtype> class TestElementwiseAddOp {
tensor_y
->
ShareDataWith
(
t2
);
Variable
*
con_output
=
scope
->
Var
(
"elementwise_add_0.tmp_0"
);
Tensor
*
output_tensor
=
con_output
->
GetMutable
<
Tensor
>
();
auto
*
output_tensor
=
con_output
->
GetMutable
<
Tensor
>
();
output_tensor
->
mutable_data
<
float
>
({
1
,
3
,
224
,
224
});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
...
...
@@ -129,25 +129,25 @@ int main() {
DLOG
<<
"begin to run ElementAddOp Test"
;
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
auto
program
=
loader
.
Load
(
std
::
string
(
"../../
../
test/models/"
loader
.
Load
(
std
::
string
(
"../../test/models/"
"image_classification_resnet.inference.model"
));
/// input x (1,3,224,224)
paddle_mobile
::
framework
::
Tensor
inputx
;
SetupTensor
<
float
>
(
&
inputx
,
{
1
,
3
,
224
,
224
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
float
*
inputx_ptr
=
inputx
.
data
<
float
>
();
auto
*
inputx_ptr
=
inputx
.
data
<
float
>
();
/// input y (224,)
paddle_mobile
::
framework
::
Tensor
inputy
;
SetupTensor
<
float
>
(
&
inputy
,
{
224
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
float
*
inputy_ptr
=
inputy
.
data
<
float
>
();
auto
*
inputy_ptr
=
inputy
.
data
<
float
>
();
paddle_mobile
::
framework
::
TestElementwiseAddOp
<
paddle_mobile
::
CPU
>
testElementwiseAddOp
(
program
);
auto
output_add
=
testElementwiseAddOp
.
predict_add
(
inputx
,
inputy
);
float
*
output_add_ptr
=
output_add
->
data
<
float
>
();
auto
*
output_add_ptr
=
output_add
->
data
<
float
>
();
// for (int j = 0; j < output_add->numel(); ++j) {
// DLOG << "value of output: " << output_add_ptr[j];
// }
...
...
test/operators/test_mul_op.cpp
浏览文件 @
253cdb2a
...
...
@@ -25,7 +25,7 @@ namespace framework {
template
<
typename
Dtype
>
class
TestMulOp
{
public:
TestMulOp
(
const
Program
<
Dtype
>
p
)
:
program_
(
p
)
{
explicit
TestMulOp
(
const
Program
<
Dtype
>
p
)
:
program_
(
p
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
...
...
@@ -69,17 +69,17 @@ template <typename Dtype> class TestMulOp {
DLOG
<<
"y_num_col_dims : "
<<
op
->
GetAttrMap
().
at
(
"y_num_col_dims"
).
Get
<
int
>
();
std
::
shared_ptr
<
operators
::
MulOp
<
Dtype
,
float
>>
add
=
std
::
shared_ptr
<
operators
::
MulOp
<
Dtype
,
float
>>
mul
=
std
::
make_shared
<
operators
::
MulOp
<
Dtype
,
float
>>
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
add
);
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
mul
);
}
}
}
}
std
::
shared_ptr
<
Tensor
>
predict_
add
(
Tensor
&
t1
,
Tensor
&
t2
)
{
std
::
shared_ptr
<
Tensor
>
predict_
mul
(
Tensor
&
t1
,
Tensor
&
t2
)
{
// feed
auto
scope
=
program_
.
scope
;
Variable
*
x_feed_value
=
scope
->
Var
(
"pool2d_0.tmp_0"
);
...
...
@@ -91,7 +91,7 @@ template <typename Dtype> class TestMulOp {
tensor_y
->
ShareDataWith
(
t2
);
Variable
*
con_output
=
scope
->
Var
(
"fc_0.tmp_0"
);
Tensor
*
output_tensor
=
con_output
->
GetMutable
<
Tensor
>
();
auto
*
output_tensor
=
con_output
->
GetMutable
<
Tensor
>
();
output_tensor
->
mutable_data
<
float
>
({
3
,
3
});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
...
...
@@ -99,7 +99,7 @@ template <typename Dtype> class TestMulOp {
std
::
shared_ptr
<
Tensor
>
out_tensor
=
std
::
make_shared
<
LoDTensor
>
();
out_tensor
.
reset
(
output_tensor
);
predict_
add
(
t1
,
t2
,
0
);
predict_
mul
(
t1
,
t2
,
0
);
return
out_tensor
;
}
...
...
@@ -111,7 +111,7 @@ template <typename Dtype> class TestMulOp {
ops_of_block_
;
bool
use_optimize_
=
false
;
void
predict_
add
(
const
Tensor
&
t1
,
const
Tensor
&
t2
,
int
block_id
)
{
void
predict_
mul
(
const
Tensor
&
t1
,
const
Tensor
&
t2
,
int
block_id
)
{
std
::
shared_ptr
<
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
block_id
);
for
(
int
j
=
0
;
j
<
ops_of_block_
[
*
to_predict_block
.
get
()].
size
();
...
...
@@ -132,25 +132,25 @@ int main() {
DLOG
<<
"begin to run MulOp Test"
;
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
auto
program
=
loader
.
Load
(
std
::
string
(
"../../
../
test/models/"
loader
.
Load
(
std
::
string
(
"../../test/models/"
"image_classification_resnet.inference.model"
));
/// input x (3,2,1,1)
paddle_mobile
::
framework
::
Tensor
inputx
;
SetupTensor
<
float
>
(
&
inputx
,
{
3
,
2
,
1
,
1
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
float
*
inputx_ptr
=
inputx
.
data
<
float
>
();
auto
*
inputx_ptr
=
inputx
.
data
<
float
>
();
/// input y (2,3)
paddle_mobile
::
framework
::
Tensor
inputy
;
SetupTensor
<
float
>
(
&
inputy
,
{
2
,
3
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
float
*
inputy_ptr
=
inputy
.
data
<
float
>
();
auto
*
inputy_ptr
=
inputy
.
data
<
float
>
();
paddle_mobile
::
framework
::
TestMulOp
<
paddle_mobile
::
CPU
>
testMulOp
(
program
);
auto
output_mul
=
testMulOp
.
predict_
add
(
inputx
,
inputy
);
float
*
output_mul_ptr
=
output_mul
->
data
<
float
>
();
auto
output_mul
=
testMulOp
.
predict_
mul
(
inputx
,
inputy
);
auto
*
output_mul_ptr
=
output_mul
->
data
<
float
>
();
auto
dimx_1
=
inputx
.
numel
()
/
inputx
.
dims
()[
0
];
DLOG
<<
" inputx : "
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录