Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
1ed5607d
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1ed5607d
编写于
10月 18, 2018
作者:
S
suiyang
提交者:
GitHub
10月 18, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Delete selected_rows_functor.cc
上级
68377adb
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
0 addition
and
294 deletion
+0
-294
src/operators/math/selected_rows_functor.cc
src/operators/math/selected_rows_functor.cc
+0
-294
未找到文件。
src/operators/math/selected_rows_functor.cc
已删除
100644 → 0
浏览文件 @
68377adb
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <set>
#include "operators/math/math_function.h"
#include "operators/math/selected_rows_functor.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
// template <typename T>
// struct SelectedRowsAdd<T> {
// void operator()(
// const framework::SelectedRows& input1,
// const framework::SelectedRows& input2,
// framework::SelectedRows* output) {
// auto in1_height = input1.height();
// PADDLE_MOBILE_ENFORCE(in1_height == input2.height());
// output->set_height(in1_height);
//
// auto& in1_rows = input1.rows();
// auto& in2_rows = input2.rows();
// std::vector<int64_t> out_rows;
// out_rows.reserve(in1_rows.size() + in2_rows.size());
//
// // concat rows
// out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
// out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
// output->set_rows(out_rows);
//
// auto* out_value = output->mutable_value();
// auto& in1_value = input1.value();
// auto& in2_value = input2.value();
//
// auto in1_row_numel = in1_value.numel() / in1_rows.size();
// PADDLE_MOBILE_ENFORCE(in1_row_numel == in2_value.numel() /
// in2_rows.size());
// PADDLE_MOBILE_ENFORCE(in1_row_numel == out_value->numel() /
// out_rows.size());
//
//// auto in1_place = input1.place();
//// PADDLE_MOBILE_ENFORCE(platform::is_cpu_place(in1_place));
//// auto in2_place = input2.place();
//// PADDLE_MOBILE_ENFORCE(platform::is_cpu_place(in2_place));
//// auto out_place = context.GetPlace();
//// PADDLE_MOBILE_ENFORCE(platform::is_cpu_place(out_place));
//
// auto* out_data = out_value->data<T>();
// auto* in1_data = in1_value.data<T>();
// memory::Copy(out_data, in1_data,
// in1_value.numel() * sizeof(T));
//
// auto* in2_data = in2_value.data<T>();
// memory::Copy(
// out_data + in1_value.numel(),
// in2_data,
// in2_value.numel() * sizeof(T));
// }
//};
//
// template struct SelectedRowsAdd<float>;
// template struct SelectedRowsAdd<double>;
////
////template <typename T>
////struct SelectedRowsAddTensor<T> {
//// void operator()(
//// const framework::SelectedRows& input1,
//// const framework::Tensor& input2, framework::Tensor*
/// output) { / auto in1_height = input1.height(); / auto in2_dims =
/// input2.dims(); / auto out_dims = output->dims(); /
/// PADDLE_MOBILE_ENFORCE(in1_height == in2_dims[0]); /
/// PADDLE_MOBILE_ENFORCE(in1_height == out_dims[0]);
////
//// auto& in1_value = input1.value();
//// auto& in1_rows = input1.rows();
////
//// int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
//// PADDLE_MOBILE_ENFORCE(in1_row_numel == input2.numel() / in1_height);
//// PADDLE_MOBILE_ENFORCE(in1_row_numel == output->numel() / in1_height);
////
//// SetConstant<T> functor;
//// functor(output, 0.0);
////
//// auto* in1_data = in1_value.data<T>();
//// auto* out_data = output->data<T>();
////
//// for (size_t i = 0; i < in1_rows.size(); i++) {
//// for (int64_t j = 0; j < in1_row_numel; j++) {
//// out_data[in1_rows[i] * in1_row_numel + j] +=
//// in1_data[i * in1_row_numel + j];
//// }
//// }
////
//// auto out_eigen = framework::EigenVector<T>::Flatten(*output);
//// auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
//// out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
//// }
////};
////
////template struct SelectedRowsAddTensor< float>;
////template struct SelectedRowsAddTensor<double>;
//
// template <typename T>
// struct SelectedRowsAddTo {
// void operator()(
// const framework::SelectedRows& input1,
// const int64_t input2_offset,
// framework::SelectedRows* input2) {
// auto in1_height = input1.height();
// PADDLE_MOBILE_ENFORCE(in1_height == input2->height());
//
// auto& in1_rows = input1.rows();
// auto& in2_rows = *(input2->mutable_rows());
//
// auto& in1_value = input1.value();
// auto* in2_value = input2->mutable_value();
//
// // concat rows
// in2_rows.Extend(in1_rows.begin(), in1_rows.end());
//
//// auto in1_place = input1.place();
//// PADDLE_ENFORCE(platform::is_cpu_place(in1_place));
//// auto in2_place = input2->place();
//// PADDLE_ENFORCE(platform::is_cpu_place(in2_place));
//
// auto* in1_data = in1_value.data<T>();
// auto* in2_data = in2_value->data<T>();
// memory::Copy(
// in2_data + input2_offset,
// in1_data,
// in1_value.numel() * sizeof(T));
// }
//};
//
// template struct SelectedRowsAddTo<float>;
// template struct SelectedRowsAddTo<double>;
// template struct SelectedRowsAddTo<int>;
// template struct SelectedRowsAddTo<int64_t>;
//
// template <typename T>
// struct SelectedRowsAddToTensor<T> {
// void operator()(const framework::SelectedRows& input1,
// framework::Tensor* input2) {
// auto in1_height = input1.height();
// auto in2_dims = input2->dims();
// PADDLE_MOBILE_ENFORCE(in1_height == in2_dims[0]);
//
// auto& in1_value = input1.value();
// auto& in1_rows = input1.rows();
//
// int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
// PADDLE_MOBILE_ENFORCE(in1_row_numel == input2->numel() / in1_height);
//
// auto* in1_data = in1_value.data<T>();
// auto* input2_data = input2->data<T>();
//
// for (size_t i = 0; i < in1_rows.size(); i++) {
// for (int64_t j = 0; j < in1_row_numel; j++) {
// input2_data[in1_rows[i] * in1_row_numel + j] +=
// in1_data[i * in1_row_numel + j];
// }
// }
// }
//};
//
// template struct SelectedRowsAddToTensor< float>;
// template struct SelectedRowsAddToTensor<double>;
// template struct SelectedRowsAddToTensor< int>;
// template struct SelectedRowsAddToTensor< int64_t>;
//
//// This is a separated namespace for manipulate SelectedRows typed
//// data. Like merge duplicated rows, adding two SelectedRows etc.
////
//// Another group of functors is called "scatter updates", which means
//// use SelectedRows to update a dense tensor with different Ops, like
//// add or mul.
//
////namespace scatter {
////
////size_t FindPos(const std::vector<int64_t>& rows, int64_t value) {
//// return std::find(rows.begin(), rows.end(), value) - rows.begin();
////}
//
////template <typename T>
////struct MergeAdd<platform::CPUDeviceContext, T> {
//// framework::SelectedRows operator()(const platform::CPUDeviceContext&
/// context, / const
/// framework::SelectedRows& input) { / framework::SelectedRows out; / auto
/// input_rows = input.rows(); / std::set<int64_t>
/// row_set(input_rows.begin(), input_rows.end()); / std::vector<int64_t>
/// merge_rows(row_set.begin(), row_set.end());
////
//// auto input_width = input.value().dims()[1];
//// out.set_rows(merge_rows);
//// out.set_height(input.height());
//// out.mutable_value()->mutable_data<T>(
//// framework::make_ddim(
//// {static_cast<int64_t>(merge_rows.size()), input_width}),
//// context.GetPlace());
////
//// math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
//// constant_functor(context, out.mutable_value(), 0.0);
////
//// auto* out_data = out.mutable_value()->data<T>();
//// auto* input_data = input.value().data<T>();
////
//// for (size_t i = 0; i < input_rows.size(); i++) {
//// size_t out_i = FindPos(merge_rows, input_rows[i]);
//// for (int64_t j = 0; j < input_width; j++) {
//// out_data[out_i * input_width + j] += input_data[i * input_width +
/// j]; / } / } / return out; / }
////};
////
////template struct MergeAdd<platform::CPUDeviceContext, float>;
////template struct MergeAdd<platform::CPUDeviceContext, double>;
////template struct MergeAdd<platform::CPUDeviceContext, int>;
////template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
////
////template <typename T>
////struct UpdateToTensor<platform::CPUDeviceContext, T> {
//// void operator()(const platform::CPUDeviceContext& context,
//// const ScatterOps& op, const framework::SelectedRows&
/// input1, / framework::Tensor* input2) { / auto in1_height
///= input1.height(); / auto in2_dims = input2->dims(); /
/// PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
////
//// auto& in1_value = input1.value();
//// auto& in1_rows = input1.rows();
////
//// int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
//// PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);
////
//// auto* in1_data = in1_value.data<T>();
//// auto* input2_data = input2->data<T>();
////
//// // FIXME(typhoonzero): use macro fix the below messy code.
//// switch (op) {
//// case ScatterOps::ASSIGN:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] =
//// in1_data[i * in1_row_numel + j];
//// break;
//// case ScatterOps::ADD:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] +=
//// in1_data[i * in1_row_numel + j];
//// break;
//// case ScatterOps::SUB:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] -=
//// in1_data[i * in1_row_numel + j];
//// break;
//// case ScatterOps::SUBBY:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] =
//// in1_data[i * in1_row_numel + j] -
//// input2_data[in1_rows[i] * in1_row_numel + j];
//// break;
//// case ScatterOps::MUL:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] *=
//// in1_data[i * in1_row_numel + j];
//// break;
//// case ScatterOps::DIV:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] /=
//// in1_data[i * in1_row_numel + j];
//// break;
//// case ScatterOps::DIVBY:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] =
//// in1_data[i * in1_row_numel + j] /
//// input2_data[in1_rows[i] * in1_row_numel + j];
//// break;
//// }
//// }
////};
//
// // namespace scatter
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录