提交 1ed5607d 编写于 作者: S suiyang 提交者: GitHub

Delete selected_rows_functor.cc

上级 68377adb
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <set>
#include "operators/math/math_function.h"
#include "operators/math/selected_rows_functor.h"
namespace paddle_mobile {
namespace operators {
namespace math {
// template <typename T>
// struct SelectedRowsAdd<T> {
// void operator()(
// const framework::SelectedRows& input1,
// const framework::SelectedRows& input2,
// framework::SelectedRows* output) {
// auto in1_height = input1.height();
// PADDLE_MOBILE_ENFORCE(in1_height == input2.height());
// output->set_height(in1_height);
//
// auto& in1_rows = input1.rows();
// auto& in2_rows = input2.rows();
// std::vector<int64_t> out_rows;
// out_rows.reserve(in1_rows.size() + in2_rows.size());
//
// // concat rows
// out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
// out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
// output->set_rows(out_rows);
//
// auto* out_value = output->mutable_value();
// auto& in1_value = input1.value();
// auto& in2_value = input2.value();
//
// auto in1_row_numel = in1_value.numel() / in1_rows.size();
// PADDLE_MOBILE_ENFORCE(in1_row_numel == in2_value.numel() /
// in2_rows.size());
// PADDLE_MOBILE_ENFORCE(in1_row_numel == out_value->numel() /
// out_rows.size());
//
//// auto in1_place = input1.place();
//// PADDLE_MOBILE_ENFORCE(platform::is_cpu_place(in1_place));
//// auto in2_place = input2.place();
//// PADDLE_MOBILE_ENFORCE(platform::is_cpu_place(in2_place));
//// auto out_place = context.GetPlace();
//// PADDLE_MOBILE_ENFORCE(platform::is_cpu_place(out_place));
//
// auto* out_data = out_value->data<T>();
// auto* in1_data = in1_value.data<T>();
// memory::Copy(out_data, in1_data,
// in1_value.numel() * sizeof(T));
//
// auto* in2_data = in2_value.data<T>();
// memory::Copy(
// out_data + in1_value.numel(),
// in2_data,
// in2_value.numel() * sizeof(T));
// }
//};
//
// template struct SelectedRowsAdd<float>;
// template struct SelectedRowsAdd<double>;
////
////template <typename T>
////struct SelectedRowsAddTensor<T> {
//// void operator()(
//// const framework::SelectedRows& input1,
//// const framework::Tensor& input2, framework::Tensor*
/// output) { / auto in1_height = input1.height(); / auto in2_dims =
/// input2.dims(); / auto out_dims = output->dims(); /
/// PADDLE_MOBILE_ENFORCE(in1_height == in2_dims[0]); /
/// PADDLE_MOBILE_ENFORCE(in1_height == out_dims[0]);
////
//// auto& in1_value = input1.value();
//// auto& in1_rows = input1.rows();
////
//// int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
//// PADDLE_MOBILE_ENFORCE(in1_row_numel == input2.numel() / in1_height);
//// PADDLE_MOBILE_ENFORCE(in1_row_numel == output->numel() / in1_height);
////
//// SetConstant<T> functor;
//// functor(output, 0.0);
////
//// auto* in1_data = in1_value.data<T>();
//// auto* out_data = output->data<T>();
////
//// for (size_t i = 0; i < in1_rows.size(); i++) {
//// for (int64_t j = 0; j < in1_row_numel; j++) {
//// out_data[in1_rows[i] * in1_row_numel + j] +=
//// in1_data[i * in1_row_numel + j];
//// }
//// }
////
//// auto out_eigen = framework::EigenVector<T>::Flatten(*output);
//// auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
//// out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
//// }
////};
////
////template struct SelectedRowsAddTensor< float>;
////template struct SelectedRowsAddTensor<double>;
//
// template <typename T>
// struct SelectedRowsAddTo {
// void operator()(
// const framework::SelectedRows& input1,
// const int64_t input2_offset,
// framework::SelectedRows* input2) {
// auto in1_height = input1.height();
// PADDLE_MOBILE_ENFORCE(in1_height == input2->height());
//
// auto& in1_rows = input1.rows();
// auto& in2_rows = *(input2->mutable_rows());
//
// auto& in1_value = input1.value();
// auto* in2_value = input2->mutable_value();
//
// // concat rows
// in2_rows.Extend(in1_rows.begin(), in1_rows.end());
//
//// auto in1_place = input1.place();
//// PADDLE_ENFORCE(platform::is_cpu_place(in1_place));
//// auto in2_place = input2->place();
//// PADDLE_ENFORCE(platform::is_cpu_place(in2_place));
//
// auto* in1_data = in1_value.data<T>();
// auto* in2_data = in2_value->data<T>();
// memory::Copy(
// in2_data + input2_offset,
// in1_data,
// in1_value.numel() * sizeof(T));
// }
//};
//
// template struct SelectedRowsAddTo<float>;
// template struct SelectedRowsAddTo<double>;
// template struct SelectedRowsAddTo<int>;
// template struct SelectedRowsAddTo<int64_t>;
//
// template <typename T>
// struct SelectedRowsAddToTensor<T> {
// void operator()(const framework::SelectedRows& input1,
// framework::Tensor* input2) {
// auto in1_height = input1.height();
// auto in2_dims = input2->dims();
// PADDLE_MOBILE_ENFORCE(in1_height == in2_dims[0]);
//
// auto& in1_value = input1.value();
// auto& in1_rows = input1.rows();
//
// int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
// PADDLE_MOBILE_ENFORCE(in1_row_numel == input2->numel() / in1_height);
//
// auto* in1_data = in1_value.data<T>();
// auto* input2_data = input2->data<T>();
//
// for (size_t i = 0; i < in1_rows.size(); i++) {
// for (int64_t j = 0; j < in1_row_numel; j++) {
// input2_data[in1_rows[i] * in1_row_numel + j] +=
// in1_data[i * in1_row_numel + j];
// }
// }
// }
//};
//
// template struct SelectedRowsAddToTensor< float>;
// template struct SelectedRowsAddToTensor<double>;
// template struct SelectedRowsAddToTensor< int>;
// template struct SelectedRowsAddToTensor< int64_t>;
//
//// This is a separated namespace for manipulate SelectedRows typed
//// data. Like merge duplicated rows, adding two SelectedRows etc.
////
//// Another group of functors is called "scatter updates", which means
//// use SelectedRows to update a dense tensor with different Ops, like
//// add or mul.
//
////namespace scatter {
////
////size_t FindPos(const std::vector<int64_t>& rows, int64_t value) {
//// return std::find(rows.begin(), rows.end(), value) - rows.begin();
////}
//
////template <typename T>
////struct MergeAdd<platform::CPUDeviceContext, T> {
//// framework::SelectedRows operator()(const platform::CPUDeviceContext&
/// context, / const
/// framework::SelectedRows& input) { / framework::SelectedRows out; / auto
/// input_rows = input.rows(); / std::set<int64_t>
/// row_set(input_rows.begin(), input_rows.end()); / std::vector<int64_t>
/// merge_rows(row_set.begin(), row_set.end());
////
//// auto input_width = input.value().dims()[1];
//// out.set_rows(merge_rows);
//// out.set_height(input.height());
//// out.mutable_value()->mutable_data<T>(
//// framework::make_ddim(
//// {static_cast<int64_t>(merge_rows.size()), input_width}),
//// context.GetPlace());
////
//// math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
//// constant_functor(context, out.mutable_value(), 0.0);
////
//// auto* out_data = out.mutable_value()->data<T>();
//// auto* input_data = input.value().data<T>();
////
//// for (size_t i = 0; i < input_rows.size(); i++) {
//// size_t out_i = FindPos(merge_rows, input_rows[i]);
//// for (int64_t j = 0; j < input_width; j++) {
//// out_data[out_i * input_width + j] += input_data[i * input_width +
/// j]; / } / } / return out; / }
////};
////
////template struct MergeAdd<platform::CPUDeviceContext, float>;
////template struct MergeAdd<platform::CPUDeviceContext, double>;
////template struct MergeAdd<platform::CPUDeviceContext, int>;
////template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
////
////template <typename T>
////struct UpdateToTensor<platform::CPUDeviceContext, T> {
//// void operator()(const platform::CPUDeviceContext& context,
//// const ScatterOps& op, const framework::SelectedRows&
/// input1, / framework::Tensor* input2) { / auto in1_height
///= input1.height(); / auto in2_dims = input2->dims(); /
/// PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
////
//// auto& in1_value = input1.value();
//// auto& in1_rows = input1.rows();
////
//// int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
//// PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);
////
//// auto* in1_data = in1_value.data<T>();
//// auto* input2_data = input2->data<T>();
////
//// // FIXME(typhoonzero): use macro fix the below messy code.
//// switch (op) {
//// case ScatterOps::ASSIGN:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] =
//// in1_data[i * in1_row_numel + j];
//// break;
//// case ScatterOps::ADD:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] +=
//// in1_data[i * in1_row_numel + j];
//// break;
//// case ScatterOps::SUB:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] -=
//// in1_data[i * in1_row_numel + j];
//// break;
//// case ScatterOps::SUBBY:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] =
//// in1_data[i * in1_row_numel + j] -
//// input2_data[in1_rows[i] * in1_row_numel + j];
//// break;
//// case ScatterOps::MUL:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] *=
//// in1_data[i * in1_row_numel + j];
//// break;
//// case ScatterOps::DIV:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] /=
//// in1_data[i * in1_row_numel + j];
//// break;
//// case ScatterOps::DIVBY:
//// INLINE_FOR2(in1_rows.size(), in1_row_numel)
//// input2_data[in1_rows[i] * in1_row_numel + j] =
//// in1_data[i * in1_row_numel + j] /
//// input2_data[in1_rows[i] * in1_row_numel + j];
//// break;
//// }
//// }
////};
//
// // namespace scatter
} // namespace math
} // namespace operators
} // namespace paddle_mobile
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册