Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
1aa706ae
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1aa706ae
编写于
9月 25, 2020
作者:
Z
zhangwen31
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle-Lite
into matrix_nms_host
上级
5c265189
b2c14f01
变更
35
展开全部
隐藏空白更改
内联
并排
Showing
35 changed file
with
1464 addition
and
675 deletion
+1464
-675
cmake/external/flatbuffers.cmake
cmake/external/flatbuffers.cmake
+1
-1
docs/index.rst
docs/index.rst
+1
-0
docs/user_guides/model_visualization.md
docs/user_guides/model_visualization.md
+214
-0
lite/CMakeLists.txt
lite/CMakeLists.txt
+11
-14
lite/backends/arm/math/conv3x3s1p01_depthwise_fp32_relu.cc
lite/backends/arm/math/conv3x3s1p01_depthwise_fp32_relu.cc
+8
-16
lite/backends/arm/math/conv3x3s1px_depthwise_fp32.cc
lite/backends/arm/math/conv3x3s1px_depthwise_fp32.cc
+0
-1
lite/backends/arm/math/conv3x3s2p01_depthwise_fp32_relu.cc
lite/backends/arm/math/conv3x3s2p01_depthwise_fp32_relu.cc
+2
-2
lite/backends/arm/math/conv_impl.cc
lite/backends/arm/math/conv_impl.cc
+2
-5
lite/backends/arm/math/interpolate.cc
lite/backends/arm/math/interpolate.cc
+27
-25
lite/backends/arm/math/interpolate.h
lite/backends/arm/math/interpolate.h
+3
-5
lite/core/arena/CMakeLists.txt
lite/core/arena/CMakeLists.txt
+1
-1
lite/core/mir/fusion/conv_conv_fuse_pass.cc
lite/core/mir/fusion/conv_conv_fuse_pass.cc
+1
-1
lite/core/mir/fusion/conv_conv_fuser.cc
lite/core/mir/fusion/conv_conv_fuser.cc
+2
-2
lite/kernels/arm/conv_depthwise.cc
lite/kernels/arm/conv_depthwise.cc
+1
-2
lite/kernels/arm/interpolate_compute.cc
lite/kernels/arm/interpolate_compute.cc
+0
-4
lite/kernels/x86/activation_compute.cc
lite/kernels/x86/activation_compute.cc
+11
-0
lite/kernels/x86/activation_compute.h
lite/kernels/x86/activation_compute.h
+36
-0
lite/kernels/x86/reduce_compute.cc
lite/kernels/x86/reduce_compute.cc
+10
-0
lite/kernels/x86/reduce_compute.h
lite/kernels/x86/reduce_compute.h
+58
-12
lite/operators/activation_ops.cc
lite/operators/activation_ops.cc
+3
-0
lite/operators/op_params.h
lite/operators/op_params.h
+2
-0
lite/tests/api/CMakeLists.txt
lite/tests/api/CMakeLists.txt
+56
-37
lite/tests/api/test_mobilenetv1_fp32_huawei_kirin_npu.cc
lite/tests/api/test_mobilenetv1_fp32_huawei_kirin_npu.cc
+101
-0
lite/tests/api/test_mobilenetv1_int8_apu.cc
lite/tests/api/test_mobilenetv1_int8_apu.cc
+0
-160
lite/tests/api/test_mobilenetv1_int8_mediatek_apu.cc
lite/tests/api/test_mobilenetv1_int8_mediatek_apu.cc
+102
-0
lite/tests/api/test_mobilenetv1_int8_rknpu.cc
lite/tests/api/test_mobilenetv1_int8_rknpu.cc
+0
-127
lite/tests/api/test_mobilenetv1_int8_rockchip_npu.cc
lite/tests/api/test_mobilenetv1_int8_rockchip_npu.cc
+102
-0
lite/tests/api/test_mobilenetv2_fp32_huawei_kirin_npu.cc
lite/tests/api/test_mobilenetv2_fp32_huawei_kirin_npu.cc
+101
-0
lite/tests/api/test_resnet50_fp32_huawei_kirin_npu.cc
lite/tests/api/test_resnet50_fp32_huawei_kirin_npu.cc
+101
-0
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+85
-85
lite/tests/kernels/activation_compute_test.cc
lite/tests/kernels/activation_compute_test.cc
+8
-1
lite/tests/kernels/interp_compute_test.cc
lite/tests/kernels/interp_compute_test.cc
+4
-0
lite/tests/kernels/reduce_mean_compute_test.cc
lite/tests/kernels/reduce_mean_compute_test.cc
+4
-3
lite/tests/math/conv_compute_test.cc
lite/tests/math/conv_compute_test.cc
+1
-9
lite/tools/ci_build.sh
lite/tools/ci_build.sh
+405
-162
未找到文件。
cmake/external/flatbuffers.cmake
浏览文件 @
1aa706ae
...
@@ -45,7 +45,7 @@ SET(OPTIONAL_ARGS "-DCMAKE_CXX_COMPILER=${HOST_CXX_COMPILER}"
...
@@ -45,7 +45,7 @@ SET(OPTIONAL_ARGS "-DCMAKE_CXX_COMPILER=${HOST_CXX_COMPILER}"
ExternalProject_Add
(
ExternalProject_Add
(
extern_flatbuffers
extern_flatbuffers
${
EXTERNAL_PROJECT_LOG_ARGS
}
${
EXTERNAL_PROJECT_LOG_ARGS
}
GIT_REPOSITORY
"https://github.com/
google
/flatbuffers.git"
GIT_REPOSITORY
"https://github.com/
Shixiaowei02
/flatbuffers.git"
GIT_TAG
"v1.12.0"
GIT_TAG
"v1.12.0"
SOURCE_DIR
${
FLATBUFFERS_SOURCES_DIR
}
SOURCE_DIR
${
FLATBUFFERS_SOURCES_DIR
}
PREFIX
${
FLATBUFFERS_PREFIX_DIR
}
PREFIX
${
FLATBUFFERS_PREFIX_DIR
}
...
...
docs/index.rst
浏览文件 @
1aa706ae
...
@@ -46,6 +46,7 @@ Welcome to Paddle-Lite's documentation!
...
@@ -46,6 +46,7 @@ Welcome to Paddle-Lite's documentation!
user_guides/post_quant_with_data
user_guides/post_quant_with_data
user_guides/post_quant_no_data
user_guides/post_quant_no_data
user_guides/model_quantization
user_guides/model_quantization
user_guides/model_visualization
user_guides/debug
user_guides/debug
.. toctree::
.. toctree::
...
...
docs/user_guides/model_visualization.md
0 → 100644
浏览文件 @
1aa706ae
# 模型可视化方法
Paddle Lite框架中主要使用到的模型结构有2种:(1) 为
[
PaddlePaddle
](
https://github.com/PaddlePaddle/Paddle
)
深度学习框架产出的模型格式; (2) 使用
[
Lite模型优化工具opt
](
model_optimize_tool
)
优化后的模型格式。因此本章节包含内容如下:
1.
[
Paddle推理模型可视化
](
model_visualization.html#paddle
)
2.
[
Lite优化模型可视化
](
model_visualization.html#lite
)
3.
[
Lite子图方式下模型可视化
](
model_visualization.html#id2
)
## Paddle推理模式可视化
Paddle用于推理的模型是通过
[
save_inference_model
](
https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/io_cn/save_inference_model_cn.html#save-inference-model
)
这个API保存下来的,存储格式有两种,由save_inference_model接口中的
`model_filename`
和
`params_filename`
变量控制:
-
**non-combined形式**
:参数保存到独立的文件,如设置
`model_filename`
为
`None`
,
`params_filename`
为
`None`
```
bash
$
ls
-l
recognize_digits_model_non-combined/
total 192K
-rw-r--r--
1 root root 28K Sep 24 09:39 __model__
# 模型文件
-rw-r--r--
1 root root 104 Sep 24 09:39 conv2d_0.b_0
# 独立权重文件
-rw-r--r--
1 root root 2.0K Sep 24 09:39 conv2d_0.w_0
# 独立权重文件
-rw-r--r--
1 root root 224 Sep 24 09:39 conv2d_1.b_0
# ...
-rw-r--r--
1 root root 98K Sep 24 09:39 conv2d_1.w_0
-rw-r--r--
1 root root 64 Sep 24 09:39 fc_0.b_0
-rw-r--r--
1 root root 32K Sep 24 09:39 fc_0.w_0
```
-
**combined形式**
:参数保存到同一个文件,如设置
`model_filename`
为
`model`
,
`params_filename`
为
`params`
```
bash
$
ls
-l
recognize_digits_model_combined/
total 160K
-rw-r--r--
1 root root 28K Sep 24 09:42 model
# 模型文件
-rw-r--r--
1 root root 132K Sep 24 09:42 params
# 权重文件
```
通过以上方式保存下来的模型文件都可以通过
[
Netron
](
https://lutzroeder.github.io/netron/
)
工具来打开查看模型的网络结构。
**注意:**
[
Netron
](
https://github.com/lutzroeder/netron
)
当前要求PaddlePaddle的保存模型文件名必须为
`__model__`
,否则无法识别。如果是通过第二种方式保存下来的combined形式的模型文件,需要将文件重命名为
`__model__`
。
## Lite优化模型可视化
Paddle Lite在执行模型推理之前需要使用
[
模型优化工具opt
](
model_optimize_tool
)
来对模型进行优化,优化后的模型结构同样可以使用
[
Netron
](
https://lutzroeder.github.io/netron/
)
工具进行查看,但是必须保存为
`protobuf`
格式,而不是
`naive_buffer`
格式。
**注意**
: 为了减少第三方库的依赖、提高Lite预测框架的通用性,在移动端使用Lite API您需要准备Naive Buffer存储格式的模型(该模型格式是以
`.nb`
为后缀的单个文件)。但是Naive Buffer格式的模型为序列化模型,不支持可视化。
这里以
[
paddle_lite_opt
](
opt/opt_python
)
工具为例:
-
当模型输入为
`non-combined`
格式的Paddle模型时,需要通过
`--model_dir`
来指定模型文件夹
```
bash
$
paddle_lite_opt
\
--model_dir
=
./recognize_digits_model_non-combined/
\
--valid_targets
=
arm
\
--optimize_out_type
=
protobuf
\
# 注意:这里必须输出为protobuf格式
--optimize_out
=
model_opt_dir_non-combined
```
优化后的模型文件会存储在由
`--optimize_out`
指定的输出文件夹下,格式如下
```
bash
$
ls
-l
model_opt_dir_non-combined/
total 152K
-rw-r--r--
1 root root 17K Sep 24 09:51 model
# 优化后的模型文件
-rw-r--r--
1 root root 132K Sep 24 09:51 params
# 优化后的权重文件
```
-
当模式输入为
`combined`
格式的Paddle模型时,需要同时输入
`--model_file`
和
`--param_file`
来分别指定Paddle模型的模型文件和权重文件
```
bash
$
paddle_lite_opt
\
--model_file
=
./recognize_digits_model_combined/model
\
--param_file
=
./recognize_digits_model_combined/params
\
--valid_targets
=
arm
\
--optimize_out_type
=
protobuf
\
# 注意:这里必须输出为protobuf格式
--optimize_out
=
model_opt_dir_combined
```
优化后的模型文件同样存储在由
`--optimize_out`
指定的输出文件夹下,格式相同
```
bash
ls
-l
model_opt_dir_combined/
total 152K
-rw-r--r--
1 root root 17K Sep 24 09:56 model
# 优化后的模型文件
-rw-r--r--
1 root root 132K Sep 24 09:56 params
# 优化后的权重文件
```
将通过以上步骤输出的优化后的模型文件
`model`
重命名为
`__model__`
,然后用
[
Netron
](
https://lutzroeder.github.io/netron/
)
工具打开即可查看优化后的模型结构。将优化前后的模型进行对比,即可发现优化后的模型比优化前的模型更轻量级,在推理任务中耗费资源更少且执行速度也更快。
<p
align=
"center"
><img
width=
"600"
src=
"https://paddlelite-data.bj.bcebos.com/doc_images/model_visualization/model_visualization.png"
/></p>
## Lite子图方式下模型可视化
当模型优化的目标硬件平台为
[
华为NPU
](
../demo_guides/huawei_kirin_npu
)
,
[
百度XPU
](
../demo_guides/baidu_xpu
)
,
[
瑞芯微NPU
](
../demo_guides/rockchip_npu
)
,
[
联发科APU
](
../demo_guides/mediatek_apu
)
等通过子图方式接入的硬件平台时,得到的优化后的
`protobuf`
格式模型中运行在这些硬件平台上的算子都由
`subgraph`
算子包含,无法查看具体的网络结构。
以
[
华为NPU
](
../demo_guides/huawei_kirin_npu
)
为例,运行以下命令进行模型优化,得到输出文件夹下的
`model, params`
两个文件。
```
bash
$
paddle_lite_opt
\
--model_dir
=
./recognize_digits_model_non-combined/
\
--valid_targets
=
npu,arm
\
# 注意:这里的目标硬件平台为NPU,ARM
--optimize_out_type
=
protobuf
\
--optimize_out
=
model_opt_dir_npu
```
将优化后的模型文件
`model`
重命名为
`__model__`
,然后用
[
Netron
](
https://lutzroeder.github.io/netron/
)
工具打开,只看到单个的subgraph算子,如下图所示:
<p
align=
"center"
><img
width=
"200"
src=
"https://paddlelite-data.bj.bcebos.com/doc_images/model_visualization/subgraph.png"
/></p>
如果想要查看subgraph中的具体模型结构和算子信息需要打开Lite Debug Log,Lite在优化过程中会以.dot文本形式输出模型的拓扑结构,将.dot的文本内容复制到
[
webgraphviz
](
http://www.webgraphviz.com/
)
即可查看模型结构。
```
bash
$
export
GLOG_v
=
5
# 注意:这里打开Lite中Level为5及以下的的Debug Log信息
$
paddle_lite_opt
\
--model_dir
=
./recognize_digits_model_non-combined/
\
--valid_targets
=
npu,arm
\
--optimize_out_type
=
protobuf
\
--optimize_out
=
model_opt_dir_npu
>
debug_log.txt 2>&1
# 以上命令会将所有的debug log存储在debug_log.txt文件中
```
打开debug_log.txt文件,将会看到多个由以下格式构成的拓扑图定义,由于recognize_digits模型在优化后仅存在一个subgraph,所以在文本搜索
`subgraphs`
的关键词,即可得到子图拓扑如下:
```
shell
I0924 10:50:12.715279 122828 optimizer.h:202]
==
Running pass: npu_subgraph_pass
I0924 10:50:12.715335 122828 ssa_graph.cc:27] node count 33
I0924 10:50:12.715412 122828 ssa_graph.cc:27] node count 33
I0924 10:50:12.715438 122828 ssa_graph.cc:27] node count 33
subgraphs: 1
# 注意:搜索subgraphs:这个关键词,
digraph G
{
node_30[label
=
"fetch"
]
node_29[label
=
"fetch0"
shape
=
"box"
style
=
"filled"
color
=
"black"
fillcolor
=
"white"
]
node_28[label
=
"save_infer_model/scale_0.tmp_0"
]
node_26[label
=
"fc_0.tmp_1"
]
node_24[label
=
"fc_0.w_0"
]
node_23[label
=
"fc0_subgraph_0"
shape
=
"box"
style
=
"filled"
color
=
"black"
fillcolor
=
"red"
]
...
node_15[label
=
"batch_norm_0.tmp_1"
]
node_17[label
=
"conv2d1_subgraph_0"
shape
=
"box"
style
=
"filled"
color
=
"black"
fillcolor
=
"red"
]
node_19[label
=
"conv2d_1.b_0"
]
node_1->node_0
node_0->node_2
node_2->node_3
...
node_28->node_29
node_29->node_30
}
// end G
I0924 10:50:12.715745 122828 op_lite.h:62] valid places 0
I0924 10:50:12.715764 122828 op_registry.cc:32] creating subgraph kernel
for
host/float/NCHW
I0924 10:50:12.715770 122828 op_lite.cc:89] pick kernel
for
subgraph host/float/NCHW get 0 kernels
```
将以上文本中以
`digraph G {`
开头和以
`} // end G`
结尾的这段文本复制粘贴到
[
webgraphviz
](
http://www.webgraphviz.com/
)
,即可看到子图中的具体模型结构,如下图。其中高亮的方形节点为算子,椭圆形节点为变量或张量。
<p
align=
"center"
><img
width=
"600"
src=
"https://paddlelite-data.bj.bcebos.com/doc_images/model_visualization/subgraph1.png"
/></p>
若模型中存在多个子图,以上方法同样可以得到所有子图的具体模型结构。
同样以
[
华为NPU
](
../demo_guides/huawei_kirin_npu
)
和ARM平台混合调度为例,子图的产生往往是由于模型中存在部分算子无法运行在NPU平台上(比如NPU不支持的算子),这会导致整个模型被切分为多个子图,子图中包含的算子会运行在NPU平台上,而子图与子图之间的一个或多个算子则只能运行在ARM平台上。这里可以通过
[
华为NPU
](
../demo_guides/huawei_kirin_npu
)
的
[
自定义子图分割
](
../demo_guides/huawei_kirin_npu.html#npuarm-cpu
)
功能,将recognize_digits模型中的
`batch_norm`
设置为禁用NPU的算子,从而将模型分割为具有两个子图的模型:
```
bash
# 此txt配置文件文件中的内容为 batch_norm
$
export
SUBGRAPH_CUSTOM_PARTITION_CONFIG_FILE
=
./subgraph_custom_partition_config_file.txt
$
export
GLOG_v
=
5
# 继续打开Lite的Debug Log信息
$
paddle_lite_opt
\
--model_dir
=
./recognize_digits_model_non-combined/
\
--valid_targets
=
npu,arm
\
--optimize_out_type
=
protobuf
\
--optimize_out
=
model_opt_dir_npu
>
debug_log.txt 2>&1
#
```
将执行以上命令之后,得到的优化后模型文件
`model`
重命名为
`__model__`
,然后用
[
Netron
](
https://lutzroeder.github.io/netron/
)
工具打开,就可以看到优化后的模型中存在2个subgraph算子,如左图所示,两个子图中间即为通过环境变量和配置文件指定的禁用NPU的
`batch_norm`
算子。
打开新保存的debug_log.txt文件,搜索
`final program`
关键字,拷贝在这之后的以
`digraph G {`
开头和以
`} // end G`
结尾的文本用
[
webgraphviz
](
http://www.webgraphviz.com/
)
查看,也是同样的模型拓扑结构,存在
`subgraph1`
和
`subgraph3`
两个子图,两个子图中间同样是被禁用NPU的
`batch_norm`
算子,如右图所示。
<p
align=
"center"
><img
src=
"https://paddlelite-data.bj.bcebos.com/doc_images/model_visualization/final_program.png"
/></p>
之后继续在debug_log.txt文件中,搜索
`subgraphs`
关键字,可以得到所有子图的.dot格式内容如下:
```
bash
digraph G
{
node_30[label
=
"fetch"
]
node_29[label
=
"fetch0"
shape
=
"box"
style
=
"filled"
color
=
"black"
fillcolor
=
"white"
]
node_28[label
=
"save_infer_model/scale_0.tmp_0"
]
node_26[label
=
"fc_0.tmp_1"
]
node_24[label
=
"fc_0.w_0"
]
...
node_17[label
=
"conv2d1_subgraph_0"
shape
=
"box"
style
=
"filled"
color
=
"black"
fillcolor
=
"red"
]
node_19[label
=
"conv2d_1.b_0"
]
node_0[label
=
"feed0"
shape
=
"box"
style
=
"filled"
color
=
"black"
fillcolor
=
"white"
]
node_5[label
=
"conv2d_0.b_0"
]
node_1[label
=
"feed"
]
node_23[label
=
"fc0_subgraph_0"
shape
=
"box"
style
=
"filled"
color
=
"black"
fillcolor
=
"red"
]
node_7[label
=
"pool2d0_subgraph_1"
shape
=
"box"
style
=
"filled"
color
=
"black"
fillcolor
=
"green"
]
node_21[label
=
"pool2d1_subgraph_0"
shape
=
"box"
style
=
"filled"
color
=
"black"
fillcolor
=
"red"
]
...
node_18[label
=
"conv2d_1.w_0"
]
node_1->node_0
node_0->node_2
...
node_28->node_29
node_29->node_30
}
// end G
```
将以上文本复制到
[
webgraphviz
](
http://www.webgraphviz.com/
)
查看,即可显示两个子图分别在整个模型中的结构,如下图所示。可以看到图中绿色高亮的方形节点的为
`subgraph1`
中的算子,红色高亮的方形节点为
`subgraph2`
中的算子,两个子图中间白色不高亮的方形节点即为被禁用NPU的
`batch_norm`
算子。
<p
align=
"center"
><img
src=
"https://paddlelite-data.bj.bcebos.com/doc_images/model_visualization/subgraph2.png"
/></p>
**注意:**
本章节用到的recognize_digits模型代码位于
[
PaddlePaddle/book
](
https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits
)
lite/CMakeLists.txt
浏览文件 @
1aa706ae
...
@@ -38,34 +38,31 @@ if (LITE_WITH_LIGHT_WEIGHT_FRAMEWORK AND NOT LITE_ON_TINY_PUBLISH)
...
@@ -38,34 +38,31 @@ if (LITE_WITH_LIGHT_WEIGHT_FRAMEWORK AND NOT LITE_ON_TINY_PUBLISH)
endif
()
endif
()
if
(
WITH_TESTING
)
if
(
WITH_TESTING
)
set
(
LITE_URL_FOR_UNITTESTS
"http://paddle-inference-dist.bj.bcebos.com/PaddleLite/models_and_data_for_unittests"
)
# models
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"lite_naive_model.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"lite_naive_model.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v1.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v2_relu.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"inception_v4_simple.tar.gz"
)
if
(
LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
)
if
(
LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v1.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v1_int16.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v1_int16.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v2_relu.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"resnet50.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"resnet50.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"inception_v4_simple.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"MobileNetV1_quant.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"MobileNetV1_quant.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"transformer_with_mask_fp32.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"transformer_with_mask_fp32.tar.gz"
)
endif
()
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"mobilenet_v1_int8_for_mediatek_apu.tar.gz"
)
if
(
NOT LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"mobilenet_v1_int8_for_rockchip_npu.tar.gz"
)
else
()
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"GoogleNet_inference.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"GoogleNet_inference.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v1.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v2_relu.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"inception_v4_simple.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"step_rnn.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"step_rnn.tar.gz"
)
set
(
LITE_URL_FOR_UNITTESTS
"http://paddle-inference-dist.bj.bcebos.com/PaddleLite/models_and_data_for_unittests"
)
# models
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"resnet50.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"resnet50.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"bert.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"bert.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"ernie.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"ernie.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"GoogLeNet.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"GoogLeNet.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"VGG19.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"VGG19.tar.gz"
)
# data
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"ILSVRC2012_small.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"bert_data.tar.gz"
)
endif
()
endif
()
# data
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"ILSVRC2012_small.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL_FOR_UNITTESTS
}
"bert_data.tar.gz"
)
endif
()
endif
()
# ----------------------------- PUBLISH -----------------------------
# ----------------------------- PUBLISH -----------------------------
...
...
lite/backends/arm/math/conv3x3s1p01_depthwise_fp32_relu.cc
浏览文件 @
1aa706ae
...
@@ -2307,12 +2307,10 @@ void conv_depthwise_3x3s1p0_bias_no_relu(float *dout,
...
@@ -2307,12 +2307,10 @@ void conv_depthwise_3x3s1p0_bias_no_relu(float *dout,
//! process bottom pad
//! process bottom pad
if
(
i
+
3
>=
h_in
)
{
if
(
i
+
3
>=
h_in
)
{
switch
(
i
+
3
-
h_in
)
{
switch
(
i
+
3
-
h_in
)
{
case
3
:
din_ptr1
=
zero_ptr
;
case
2
:
case
2
:
din_ptr
2
=
zero_ptr
;
din_ptr
1
=
zero_ptr
;
case
1
:
case
1
:
din_ptr
3
=
zero_ptr
;
din_ptr
2
=
zero_ptr
;
case
0
:
case
0
:
din_ptr3
=
zero_ptr
;
din_ptr3
=
zero_ptr
;
default:
default:
...
@@ -2591,12 +2589,10 @@ void conv_depthwise_3x3s1p0_bias_relu(float *dout,
...
@@ -2591,12 +2589,10 @@ void conv_depthwise_3x3s1p0_bias_relu(float *dout,
//! process bottom pad
//! process bottom pad
if
(
i
+
3
>=
h_in
)
{
if
(
i
+
3
>=
h_in
)
{
switch
(
i
+
3
-
h_in
)
{
switch
(
i
+
3
-
h_in
)
{
case
3
:
din_ptr1
=
zero_ptr
;
case
2
:
case
2
:
din_ptr
2
=
zero_ptr
;
din_ptr
1
=
zero_ptr
;
case
1
:
case
1
:
din_ptr
3
=
zero_ptr
;
din_ptr
2
=
zero_ptr
;
case
0
:
case
0
:
din_ptr3
=
zero_ptr
;
din_ptr3
=
zero_ptr
;
default:
default:
...
@@ -2730,12 +2726,10 @@ void conv_depthwise_3x3s1p0_bias_s_no_relu(float *dout,
...
@@ -2730,12 +2726,10 @@ void conv_depthwise_3x3s1p0_bias_s_no_relu(float *dout,
if
(
j
+
3
>=
h_in
)
{
if
(
j
+
3
>=
h_in
)
{
switch
(
j
+
3
-
h_in
)
{
switch
(
j
+
3
-
h_in
)
{
case
3
:
dr1
=
zero_ptr
;
case
2
:
case
2
:
dr
2
=
zero_ptr
;
dr
1
=
zero_ptr
;
case
1
:
case
1
:
dr
3
=
zero_ptr
;
dr
2
=
zero_ptr
;
doutr1
=
trash_buf
;
doutr1
=
trash_buf
;
case
0
:
case
0
:
dr3
=
zero_ptr
;
dr3
=
zero_ptr
;
...
@@ -2889,12 +2883,10 @@ void conv_depthwise_3x3s1p0_bias_s_relu(float *dout,
...
@@ -2889,12 +2883,10 @@ void conv_depthwise_3x3s1p0_bias_s_relu(float *dout,
if
(
j
+
3
>=
h_in
)
{
if
(
j
+
3
>=
h_in
)
{
switch
(
j
+
3
-
h_in
)
{
switch
(
j
+
3
-
h_in
)
{
case
3
:
dr1
=
zero_ptr
;
case
2
:
case
2
:
dr
2
=
zero_ptr
;
dr
1
=
zero_ptr
;
case
1
:
case
1
:
dr
3
=
zero_ptr
;
dr
2
=
zero_ptr
;
doutr1
=
trash_buf
;
doutr1
=
trash_buf
;
case
0
:
case
0
:
dr3
=
zero_ptr
;
dr3
=
zero_ptr
;
...
...
lite/backends/arm/math/conv3x3s1px_depthwise_fp32.cc
浏览文件 @
1aa706ae
...
@@ -645,7 +645,6 @@ void conv_3x3s1_depthwise_fp32_bias(const float* i_data,
...
@@ -645,7 +645,6 @@ void conv_3x3s1_depthwise_fp32_bias(const float* i_data,
bool
flag_bias
=
param
.
bias
!=
nullptr
;
bool
flag_bias
=
param
.
bias
!=
nullptr
;
/// get workspace
/// get workspace
LOG
(
INFO
)
<<
"conv_3x3s1_depthwise_fp32_bias: "
;
float
*
ptr_zero
=
ctx
->
workspace_data
<
float
>
();
float
*
ptr_zero
=
ctx
->
workspace_data
<
float
>
();
memset
(
ptr_zero
,
0
,
sizeof
(
float
)
*
win_round
);
memset
(
ptr_zero
,
0
,
sizeof
(
float
)
*
win_round
);
float
*
ptr_write
=
ptr_zero
+
win_round
;
float
*
ptr_write
=
ptr_zero
+
win_round
;
...
...
lite/backends/arm/math/conv3x3s2p01_depthwise_fp32_relu.cc
浏览文件 @
1aa706ae
...
@@ -713,7 +713,7 @@ void conv_depthwise_3x3s2p1_bias_relu(float* dout,
...
@@ -713,7 +713,7 @@ void conv_depthwise_3x3s2p1_bias_relu(float* dout,
cnt_col
++
;
cnt_col
++
;
size_right_remain
-=
8
;
size_right_remain
-=
8
;
}
}
int
cnt_remain
=
(
size_right_remain
==
8
)
?
4
:
(
w_out
%
4
);
//
int
cnt_remain
=
(
size_right_remain
==
8
&&
w_out
%
4
==
0
)
?
4
:
(
w_out
%
4
);
int
size_right_pad
=
w_out
*
2
-
w_in
;
int
size_right_pad
=
w_out
*
2
-
w_in
;
...
@@ -966,7 +966,7 @@ void conv_depthwise_3x3s2p1_bias_no_relu(float* dout,
...
@@ -966,7 +966,7 @@ void conv_depthwise_3x3s2p1_bias_no_relu(float* dout,
cnt_col
++
;
cnt_col
++
;
size_right_remain
-=
8
;
size_right_remain
-=
8
;
}
}
int
cnt_remain
=
(
size_right_remain
==
8
)
?
4
:
(
w_out
%
4
);
//
int
cnt_remain
=
(
size_right_remain
==
8
&&
w_out
%
4
==
0
)
?
4
:
(
w_out
%
4
);
int
size_right_pad
=
w_out
*
2
-
w_in
;
int
size_right_pad
=
w_out
*
2
-
w_in
;
...
...
lite/backends/arm/math/conv_impl.cc
浏览文件 @
1aa706ae
...
@@ -620,10 +620,8 @@ void conv_depthwise_3x3_fp32(const void* din,
...
@@ -620,10 +620,8 @@ void conv_depthwise_3x3_fp32(const void* din,
int
pad
=
pad_w
;
int
pad
=
pad_w
;
bool
flag_bias
=
param
.
bias
!=
nullptr
;
bool
flag_bias
=
param
.
bias
!=
nullptr
;
bool
pads_less
=
((
paddings
[
1
]
<
2
)
&&
(
paddings
[
3
]
<
2
));
bool
pads_less
=
((
paddings
[
1
]
<
2
)
&&
(
paddings
[
3
]
<
2
));
bool
ch_four
=
ch_in
<=
4
*
w_in
;
if
(
stride
==
1
)
{
if
(
stride
==
1
)
{
if
(
ch_four
&&
pads_less
&&
(
pad_h
==
pad_w
)
&&
if
(
pads_less
&&
(
pad_h
==
pad_w
)
&&
(
pad
<
2
))
{
// support pad = [0, 1]
(
pad
<
2
))
{
// support pad = [0, 1]
conv_depthwise_3x3s1_fp32
(
reinterpret_cast
<
const
float
*>
(
din
),
conv_depthwise_3x3s1_fp32
(
reinterpret_cast
<
const
float
*>
(
din
),
reinterpret_cast
<
float
*>
(
dout
),
reinterpret_cast
<
float
*>
(
dout
),
num
,
num
,
...
@@ -656,8 +654,7 @@ void conv_depthwise_3x3_fp32(const void* din,
...
@@ -656,8 +654,7 @@ void conv_depthwise_3x3_fp32(const void* din,
ctx
);
ctx
);
}
}
}
else
if
(
stride
==
2
)
{
}
else
if
(
stride
==
2
)
{
if
(
ch_four
&&
pads_less
&&
pad_h
==
pad_w
&&
if
(
pads_less
&&
pad_h
==
pad_w
&&
(
pad
<
2
))
{
// support pad = [0, 1]
(
pad
<
2
))
{
// support pad = [0, 1]
conv_depthwise_3x3s2_fp32
(
reinterpret_cast
<
const
float
*>
(
din
),
conv_depthwise_3x3s2_fp32
(
reinterpret_cast
<
const
float
*>
(
din
),
reinterpret_cast
<
float
*>
(
dout
),
reinterpret_cast
<
float
*>
(
dout
),
num
,
num
,
...
...
lite/backends/arm/math/interpolate.cc
浏览文件 @
1aa706ae
...
@@ -70,8 +70,7 @@ void bilinear_interp(const float* src,
...
@@ -70,8 +70,7 @@ void bilinear_interp(const float* src,
int
h_out
,
int
h_out
,
float
scale_x
,
float
scale_x
,
float
scale_y
,
float
scale_y
,
bool
align_corners
,
bool
with_align
)
{
bool
align_mode
)
{
int
*
buf
=
new
int
[
w_out
+
h_out
+
w_out
*
2
+
h_out
*
2
];
int
*
buf
=
new
int
[
w_out
+
h_out
+
w_out
*
2
+
h_out
*
2
];
int
*
xofs
=
buf
;
int
*
xofs
=
buf
;
...
@@ -79,13 +78,14 @@ void bilinear_interp(const float* src,
...
@@ -79,13 +78,14 @@ void bilinear_interp(const float* src,
float
*
alpha
=
reinterpret_cast
<
float
*>
(
buf
+
w_out
+
h_out
);
float
*
alpha
=
reinterpret_cast
<
float
*>
(
buf
+
w_out
+
h_out
);
float
*
beta
=
reinterpret_cast
<
float
*>
(
buf
+
w_out
+
h_out
+
w_out
*
2
);
float
*
beta
=
reinterpret_cast
<
float
*>
(
buf
+
w_out
+
h_out
+
w_out
*
2
);
bool
with_align
=
(
align_mode
==
0
&&
!
align_corners
);
float
fx
=
0.0
f
;
float
fx
=
0.0
f
;
float
fy
=
0.0
f
;
float
fy
=
0.0
f
;
int
sx
=
0
;
int
sx
=
0
;
int
sy
=
0
;
int
sy
=
0
;
if
(
!
with_align
)
{
if
(
with_align
)
{
scale_x
=
static_cast
<
float
>
(
w_in
-
1
)
/
(
w_out
-
1
);
scale_y
=
static_cast
<
float
>
(
h_in
-
1
)
/
(
h_out
-
1
);
// calculate x axis coordinate
// calculate x axis coordinate
for
(
int
dx
=
0
;
dx
<
w_out
;
dx
++
)
{
for
(
int
dx
=
0
;
dx
<
w_out
;
dx
++
)
{
fx
=
dx
*
scale_x
;
fx
=
dx
*
scale_x
;
...
@@ -105,6 +105,8 @@ void bilinear_interp(const float* src,
...
@@ -105,6 +105,8 @@ void bilinear_interp(const float* src,
beta
[
dy
*
2
+
1
]
=
fy
;
beta
[
dy
*
2
+
1
]
=
fy
;
}
}
}
else
{
}
else
{
scale_x
=
static_cast
<
float
>
(
w_in
)
/
w_out
;
scale_y
=
static_cast
<
float
>
(
h_in
)
/
h_out
;
// calculate x axis coordinate
// calculate x axis coordinate
for
(
int
dx
=
0
;
dx
<
w_out
;
dx
++
)
{
for
(
int
dx
=
0
;
dx
<
w_out
;
dx
++
)
{
fx
=
scale_x
*
(
dx
+
0.5
f
)
-
0.5
f
;
fx
=
scale_x
*
(
dx
+
0.5
f
)
-
0.5
f
;
...
@@ -466,9 +468,15 @@ void nearest_interp(const float* src,
...
@@ -466,9 +468,15 @@ void nearest_interp(const float* src,
float
*
dst
,
float
*
dst
,
int
w_out
,
int
w_out
,
int
h_out
,
int
h_out
,
float
scale_
w_new
,
float
scale_
x
,
float
scale_
h_new
,
float
scale_
y
,
bool
with_align
)
{
bool
with_align
)
{
float
scale_w_new
=
(
with_align
)
?
(
static_cast
<
float
>
(
w_in
-
1
)
/
(
w_out
-
1
))
:
(
static_cast
<
float
>
(
w_in
)
/
(
w_out
));
float
scale_h_new
=
(
with_align
)
?
(
static_cast
<
float
>
(
h_in
-
1
)
/
(
h_out
-
1
))
:
(
static_cast
<
float
>
(
h_in
)
/
(
h_out
));
if
(
with_align
)
{
if
(
with_align
)
{
for
(
int
h
=
0
;
h
<
h_out
;
++
h
)
{
for
(
int
h
=
0
;
h
<
h_out
;
++
h
)
{
float
*
dst_p
=
dst
+
h
*
w_out
;
float
*
dst_p
=
dst
+
h
*
w_out
;
...
@@ -498,8 +506,7 @@ void interpolate(lite::Tensor* X,
...
@@ -498,8 +506,7 @@ void interpolate(lite::Tensor* X,
int
out_height
,
int
out_height
,
int
out_width
,
int
out_width
,
float
scale
,
float
scale
,
bool
align_corners
,
bool
with_align
,
bool
align_mode
,
std
::
string
interpolate_type
)
{
std
::
string
interpolate_type
)
{
int
in_h
=
X
->
dims
()[
2
];
int
in_h
=
X
->
dims
()[
2
];
int
in_w
=
X
->
dims
()[
3
];
int
in_w
=
X
->
dims
()[
3
];
...
@@ -524,12 +531,12 @@ void interpolate(lite::Tensor* X,
...
@@ -524,12 +531,12 @@ void interpolate(lite::Tensor* X,
out_width
=
out_size_data
[
1
];
out_width
=
out_size_data
[
1
];
}
}
}
}
//
float height_scale = scale;
float
height_scale
=
scale
;
//
float width_scale = scale;
float
width_scale
=
scale
;
//
if (out_width > 0 && out_height > 0) {
if
(
out_width
>
0
&&
out_height
>
0
)
{
//
height_scale = static_cast<float>(out_height / X->dims()[2]);
height_scale
=
static_cast
<
float
>
(
out_height
/
X
->
dims
()[
2
]);
//
width_scale = static_cast<float>(out_width / X->dims()[3]);
width_scale
=
static_cast
<
float
>
(
out_width
/
X
->
dims
()[
3
]);
//
}
}
int
num_cout
=
X
->
dims
()[
0
];
int
num_cout
=
X
->
dims
()[
0
];
int
c_cout
=
X
->
dims
()[
1
];
int
c_cout
=
X
->
dims
()[
1
];
Out
->
Resize
({
num_cout
,
c_cout
,
out_height
,
out_width
});
Out
->
Resize
({
num_cout
,
c_cout
,
out_height
,
out_width
});
...
@@ -544,10 +551,6 @@ void interpolate(lite::Tensor* X,
...
@@ -544,10 +551,6 @@ void interpolate(lite::Tensor* X,
int
spatial_in
=
in_h
*
in_w
;
int
spatial_in
=
in_h
*
in_w
;
int
spatial_out
=
out_h
*
out_w
;
int
spatial_out
=
out_h
*
out_w
;
float
scale_x
=
(
align_corners
)
?
(
static_cast
<
float
>
(
in_w
-
1
)
/
(
out_w
-
1
))
:
(
static_cast
<
float
>
(
in_w
)
/
(
out_w
));
float
scale_y
=
(
align_corners
)
?
(
static_cast
<
float
>
(
in_h
-
1
)
/
(
out_h
-
1
))
:
(
static_cast
<
float
>
(
in_h
)
/
(
out_h
));
if
(
"Bilinear"
==
interpolate_type
)
{
if
(
"Bilinear"
==
interpolate_type
)
{
#pragma omp parallel for
#pragma omp parallel for
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
...
@@ -557,10 +560,9 @@ void interpolate(lite::Tensor* X,
...
@@ -557,10 +560,9 @@ void interpolate(lite::Tensor* X,
dout
+
spatial_out
*
i
,
dout
+
spatial_out
*
i
,
out_w
,
out_w
,
out_h
,
out_h
,
scale_x
,
1.
f
/
width_scale
,
scale_y
,
1.
f
/
height_scale
,
align_corners
,
with_align
);
align_mode
);
}
}
}
else
if
(
"Nearest"
==
interpolate_type
)
{
}
else
if
(
"Nearest"
==
interpolate_type
)
{
#pragma omp parallel for
#pragma omp parallel for
...
@@ -571,9 +573,9 @@ void interpolate(lite::Tensor* X,
...
@@ -571,9 +573,9 @@ void interpolate(lite::Tensor* X,
dout
+
spatial_out
*
i
,
dout
+
spatial_out
*
i
,
out_w
,
out_w
,
out_h
,
out_h
,
scale_x
,
1.
f
/
width_scale
,
scale_y
,
1.
f
/
height_scale
,
align_corners
);
with_align
);
}
}
}
}
}
}
...
...
lite/backends/arm/math/interpolate.h
浏览文件 @
1aa706ae
...
@@ -30,8 +30,7 @@ void bilinear_interp(const float* src,
...
@@ -30,8 +30,7 @@ void bilinear_interp(const float* src,
int
h_out
,
int
h_out
,
float
scale_x
,
float
scale_x
,
float
scale_y
,
float
scale_y
,
bool
align_corners
,
bool
with_align
);
bool
align_mode
);
void
nearest_interp
(
const
float
*
src
,
void
nearest_interp
(
const
float
*
src
,
int
w_in
,
int
w_in
,
...
@@ -41,7 +40,7 @@ void nearest_interp(const float* src,
...
@@ -41,7 +40,7 @@ void nearest_interp(const float* src,
int
h_out
,
int
h_out
,
float
scale_x
,
float
scale_x
,
float
scale_y
,
float
scale_y
,
bool
align_corners
);
bool
with_align
);
void
interpolate
(
lite
::
Tensor
*
X
,
void
interpolate
(
lite
::
Tensor
*
X
,
lite
::
Tensor
*
OutSize
,
lite
::
Tensor
*
OutSize
,
...
@@ -51,8 +50,7 @@ void interpolate(lite::Tensor* X,
...
@@ -51,8 +50,7 @@ void interpolate(lite::Tensor* X,
int
out_height
,
int
out_height
,
int
out_width
,
int
out_width
,
float
scale
,
float
scale
,
bool
align_corners
,
bool
with_align
,
bool
align_mode
,
std
::
string
interpolate_type
);
std
::
string
interpolate_type
);
}
/* namespace math */
}
/* namespace math */
...
...
lite/core/arena/CMakeLists.txt
浏览文件 @
1aa706ae
...
@@ -6,5 +6,5 @@ endif()
...
@@ -6,5 +6,5 @@ endif()
lite_cc_library
(
arena_framework SRCS framework.cc DEPS program gtest
)
lite_cc_library
(
arena_framework SRCS framework.cc DEPS program gtest
)
if
((
NOT LITE_WITH_OPENCL
)
AND
(
LITE_WITH_X86 OR LITE_WITH_ARM
))
if
((
NOT LITE_WITH_OPENCL
)
AND
(
LITE_WITH_X86 OR LITE_WITH_ARM
))
lite_cc_test
(
test_arena_framework SRCS framework_test.cc DEPS arena_framework
${
rknpu_kernels
}
${
mlu_kernels
}
${
bm_kernels
}
${
npu_kernels
}
${
huawei_ascend_npu_kernels
}
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
fpga_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_arena_framework SRCS framework_test.cc DEPS arena_framework
${
rknpu_kernels
}
${
mlu_kernels
}
${
bm_kernels
}
${
npu_kernels
}
${
apu_kernels
}
${
huawei_ascend_npu_kernels
}
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
fpga_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
endif
()
endif
()
lite/core/mir/fusion/conv_conv_fuse_pass.cc
浏览文件 @
1aa706ae
...
@@ -27,7 +27,7 @@ namespace mir {
...
@@ -27,7 +27,7 @@ namespace mir {
void
ConvConvFusePass
::
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
{
void
ConvConvFusePass
::
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
{
// initialze fuser params
// initialze fuser params
std
::
vector
<
bool
>
conv_has_bias_cases
{
true
,
false
};
std
::
vector
<
bool
>
conv_has_bias_cases
{
true
,
false
};
std
::
vector
<
std
::
string
>
conv_type_cases
{
"conv2d"
,
"depthwise_conv2d"
};
std
::
vector
<
std
::
string
>
conv_type_cases
{
"conv2d"
};
bool
has_int8
=
false
;
bool
has_int8
=
false
;
bool
has_weight_quant
=
false
;
bool
has_weight_quant
=
false
;
for
(
auto
&
place
:
graph
->
valid_places
())
{
for
(
auto
&
place
:
graph
->
valid_places
())
{
...
...
lite/core/mir/fusion/conv_conv_fuser.cc
浏览文件 @
1aa706ae
...
@@ -132,8 +132,8 @@ void ConvConvFuser::BuildPattern() {
...
@@ -132,8 +132,8 @@ void ConvConvFuser::BuildPattern() {
VLOG
(
5
)
<<
"The kernel size of the second conv must be 1x1"
;
VLOG
(
5
)
<<
"The kernel size of the second conv must be 1x1"
;
continue
;
continue
;
}
}
if
(
groups1
!=
1
)
{
if
(
groups
0
!=
1
||
groups
1
!=
1
)
{
VLOG
(
5
)
<<
"The
groups of weight1
_dim must be 1"
;
VLOG
(
5
)
<<
"The
all groups of weight
_dim must be 1"
;
continue
;
continue
;
}
}
if
(
ch_out_0
!=
ch_in_1
)
{
if
(
ch_out_0
!=
ch_in_1
)
{
...
...
lite/kernels/arm/conv_depthwise.cc
浏览文件 @
1aa706ae
...
@@ -32,11 +32,10 @@ void DepthwiseConv<PRECISION(kFloat), PRECISION(kFloat)>::PrepareForRun() {
...
@@ -32,11 +32,10 @@ void DepthwiseConv<PRECISION(kFloat), PRECISION(kFloat)>::PrepareForRun() {
auto
hin
=
param
.
x
->
dims
()[
2
];
auto
hin
=
param
.
x
->
dims
()[
2
];
auto
win
=
param
.
x
->
dims
()[
3
];
auto
win
=
param
.
x
->
dims
()[
3
];
auto
paddings
=
*
param
.
paddings
;
auto
paddings
=
*
param
.
paddings
;
bool
ch_four
=
channel
<=
4
*
win
;
// select dw conv kernel
// select dw conv kernel
if
(
kw
==
3
)
{
if
(
kw
==
3
)
{
bool
pads_less
=
((
paddings
[
1
]
<
2
)
&&
(
paddings
[
3
]
<
2
));
bool
pads_less
=
((
paddings
[
1
]
<
2
)
&&
(
paddings
[
3
]
<
2
));
if
(
ch_four
&&
pads_less
&&
paddings
[
0
]
==
paddings
[
2
]
&&
if
(
pads_less
&&
paddings
[
0
]
==
paddings
[
2
]
&&
(
paddings
[
0
]
==
0
||
paddings
[
0
]
==
1
))
{
(
paddings
[
0
]
==
0
||
paddings
[
0
]
==
1
))
{
flag_trans_weights_
=
false
;
flag_trans_weights_
=
false
;
}
else
{
}
else
{
...
...
lite/kernels/arm/interpolate_compute.cc
浏览文件 @
1aa706ae
...
@@ -35,7 +35,6 @@ void BilinearInterpCompute::Run() {
...
@@ -35,7 +35,6 @@ void BilinearInterpCompute::Run() {
int
out_w
=
param
.
out_w
;
int
out_w
=
param
.
out_w
;
int
out_h
=
param
.
out_h
;
int
out_h
=
param
.
out_h
;
bool
align_corners
=
param
.
align_corners
;
bool
align_corners
=
param
.
align_corners
;
bool
align_mode
=
param
.
align_mode
;
std
::
string
interp_method
=
"Bilinear"
;
std
::
string
interp_method
=
"Bilinear"
;
lite
::
arm
::
math
::
interpolate
(
X
,
lite
::
arm
::
math
::
interpolate
(
X
,
OutSize
,
OutSize
,
...
@@ -46,7 +45,6 @@ void BilinearInterpCompute::Run() {
...
@@ -46,7 +45,6 @@ void BilinearInterpCompute::Run() {
out_w
,
out_w
,
scale
,
scale
,
align_corners
,
align_corners
,
align_mode
,
interp_method
);
interp_method
);
}
}
...
@@ -61,7 +59,6 @@ void NearestInterpCompute::Run() {
...
@@ -61,7 +59,6 @@ void NearestInterpCompute::Run() {
int
out_w
=
param
.
out_w
;
int
out_w
=
param
.
out_w
;
int
out_h
=
param
.
out_h
;
int
out_h
=
param
.
out_h
;
bool
align_corners
=
param
.
align_corners
;
bool
align_corners
=
param
.
align_corners
;
bool
align_mode
=
param
.
align_mode
;
std
::
string
interp_method
=
"Nearest"
;
std
::
string
interp_method
=
"Nearest"
;
lite
::
arm
::
math
::
interpolate
(
X
,
lite
::
arm
::
math
::
interpolate
(
X
,
OutSize
,
OutSize
,
...
@@ -72,7 +69,6 @@ void NearestInterpCompute::Run() {
...
@@ -72,7 +69,6 @@ void NearestInterpCompute::Run() {
out_w
,
out_w
,
scale
,
scale
,
align_corners
,
align_corners
,
align_mode
,
interp_method
);
interp_method
);
}
}
...
...
lite/kernels/x86/activation_compute.cc
浏览文件 @
1aa706ae
...
@@ -88,3 +88,14 @@ REGISTER_LITE_KERNEL(sigmoid,
...
@@ -88,3 +88,14 @@ REGISTER_LITE_KERNEL(sigmoid,
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
.
Finalize
();
// float
REGISTER_LITE_KERNEL
(
relu6
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
Relu6Compute
<
float
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
lite/kernels/x86/activation_compute.h
浏览文件 @
1aa706ae
...
@@ -248,6 +248,42 @@ class SoftsignCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
...
@@ -248,6 +248,42 @@ class SoftsignCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
virtual
~
SoftsignCompute
()
=
default
;
virtual
~
SoftsignCompute
()
=
default
;
};
};
// relu6(x) = min(max(0, x), 6)
template
<
typename
T
>
struct
Relu6Functor
{
float
threshold
;
explicit
Relu6Functor
(
float
threshold_
)
:
threshold
(
threshold_
)
{}
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
cwiseMax
(
static_cast
<
T
>
(
0
)).
cwiseMin
(
static_cast
<
T
>
(
threshold
));
}
};
template
<
typename
T
>
class
Relu6Compute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ActivationParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
ActivationParam
>
();
param
.
Out
->
template
mutable_data
<
T
>();
auto
X
=
param
.
X
;
auto
Out
=
param
.
Out
;
auto
place
=
lite
::
fluid
::
EigenDeviceType
<
TARGET
(
kX86
)
>
();
CHECK
(
X
);
CHECK
(
Out
);
auto
x
=
lite
::
fluid
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
out
=
lite
::
fluid
::
EigenVector
<
T
>::
Flatten
(
*
Out
);
Relu6Functor
<
T
>
functor
(
param
.
threshold
);
functor
(
place
,
x
,
out
);
}
virtual
~
Relu6Compute
()
=
default
;
};
}
// namespace x86
}
// namespace x86
}
// namespace kernels
}
// namespace kernels
}
// namespace lite
}
// namespace lite
...
...
lite/kernels/x86/reduce_compute.cc
浏览文件 @
1aa706ae
...
@@ -23,3 +23,13 @@ REGISTER_LITE_KERNEL(reduce_sum,
...
@@ -23,3 +23,13 @@ REGISTER_LITE_KERNEL(reduce_sum,
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
.
Finalize
();
REGISTER_LITE_KERNEL
(
reduce_mean
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
ReduceMeanCompute
<
float
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
lite/kernels/x86/reduce_compute.h
浏览文件 @
1aa706ae
...
@@ -31,11 +31,18 @@ struct SumFunctor {
...
@@ -31,11 +31,18 @@ struct SumFunctor {
}
}
};
};
#define HANDLE_DIM(NDIM, RDIM) \
struct
MeanFunctor
{
if (ndim == NDIM && rdim == RDIM) { \
template
<
typename
X
,
typename
Y
,
typename
Dim
>
paddle::lite::kernels::x86:: \
void
operator
()(
X
*
x
,
Y
*
y
,
const
Dim
&
dim
)
{
ReduceFunctor<lite::TargetType::kX86, T, NDIM, RDIM, SumFunctor>( \
y
->
device
(
lite
::
fluid
::
EigenDeviceType
<
TARGET
(
kX86
)
>
())
=
x
->
mean
(
dim
);
*input, output, dims, keep_dim); \
}
};
#define HANDLE_DIM(NDIM, RDIM, FUNCTOR) \
if (ndim == NDIM && rdim == RDIM) { \
paddle::lite::kernels::x86:: \
ReduceFunctor<lite::TargetType::kX86, T, NDIM, RDIM, FUNCTOR>( \
*input, output, dims, keep_dim); \
}
}
template
<
typename
T
>
template
<
typename
T
>
...
@@ -64,19 +71,58 @@ class ReduceSumCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
...
@@ -64,19 +71,58 @@ class ReduceSumCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
}
else
{
}
else
{
int
ndim
=
input
->
dims
().
size
();
int
ndim
=
input
->
dims
().
size
();
int
rdim
=
dims
.
size
();
int
rdim
=
dims
.
size
();
HANDLE_DIM
(
4
,
3
);
HANDLE_DIM
(
4
,
3
,
SumFunctor
);
HANDLE_DIM
(
4
,
2
);
HANDLE_DIM
(
4
,
2
,
SumFunctor
);
HANDLE_DIM
(
4
,
1
);
HANDLE_DIM
(
4
,
1
,
SumFunctor
);
HANDLE_DIM
(
3
,
2
);
HANDLE_DIM
(
3
,
2
,
SumFunctor
);
HANDLE_DIM
(
3
,
1
);
HANDLE_DIM
(
3
,
1
,
SumFunctor
);
HANDLE_DIM
(
2
,
1
);
HANDLE_DIM
(
2
,
1
,
SumFunctor
);
HANDLE_DIM
(
1
,
1
);
HANDLE_DIM
(
1
,
1
,
SumFunctor
);
}
}
}
}
virtual
~
ReduceSumCompute
()
=
default
;
virtual
~
ReduceSumCompute
()
=
default
;
};
};
template
<
typename
T
>
class
ReduceMeanCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ReduceParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
ReduceParam
>
();
// auto& context = ctx_->As<X86Context>();
auto
*
input
=
param
.
x
;
auto
*
output
=
param
.
output
;
param
.
output
->
template
mutable_data
<
T
>();
const
auto
&
dims
=
param
.
dim
;
bool
keep_dim
=
param
.
keep_dim
;
if
(
dims
.
size
()
==
0
)
{
// Flatten and reduce 1-D tensor
auto
x
=
lite
::
fluid
::
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
out
=
lite
::
fluid
::
EigenScalar
<
T
>::
From
(
output
);
// auto& place = *platform::CPUDeviceContext().eigen_device();
auto
reduce_dim
=
Eigen
::
array
<
int
,
1
>
({{
0
}});
MeanFunctor
functor
;
functor
(
&
x
,
&
out
,
reduce_dim
);
}
else
{
int
ndim
=
input
->
dims
().
size
();
int
rdim
=
dims
.
size
();
HANDLE_DIM
(
4
,
3
,
MeanFunctor
);
HANDLE_DIM
(
4
,
2
,
MeanFunctor
);
HANDLE_DIM
(
4
,
1
,
MeanFunctor
);
HANDLE_DIM
(
3
,
2
,
MeanFunctor
);
HANDLE_DIM
(
3
,
1
,
MeanFunctor
);
HANDLE_DIM
(
2
,
1
,
MeanFunctor
);
HANDLE_DIM
(
1
,
1
,
MeanFunctor
);
}
}
virtual
~
ReduceMeanCompute
()
=
default
;
};
}
// namespace x86
}
// namespace x86
}
// namespace kernels
}
// namespace kernels
}
// namespace lite
}
// namespace lite
...
...
lite/operators/activation_ops.cc
浏览文件 @
1aa706ae
...
@@ -89,6 +89,9 @@ bool ActivationOp::AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) {
...
@@ -89,6 +89,9 @@ bool ActivationOp::AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) {
}
else
if
(
opdesc
.
Type
()
==
"elu"
)
{
}
else
if
(
opdesc
.
Type
()
==
"elu"
)
{
param_
.
active_type
=
lite_api
::
ActivationType
::
kElu
;
param_
.
active_type
=
lite_api
::
ActivationType
::
kElu
;
param_
.
Elu_alpha
=
opdesc
.
GetAttr
<
float
>
(
"alpha"
);
param_
.
Elu_alpha
=
opdesc
.
GetAttr
<
float
>
(
"alpha"
);
}
else
if
(
opdesc
.
Type
()
==
"relu6"
)
{
param_
.
active_type
=
lite_api
::
ActivationType
::
kRelu6
;
param_
.
threshold
=
opdesc
.
GetAttr
<
float
>
(
"threshold"
);
}
}
VLOG
(
4
)
<<
"opdesc.Type():"
<<
opdesc
.
Type
();
VLOG
(
4
)
<<
"opdesc.Type():"
<<
opdesc
.
Type
();
...
...
lite/operators/op_params.h
浏览文件 @
1aa706ae
...
@@ -403,6 +403,8 @@ struct ActivationParam : ParamBase {
...
@@ -403,6 +403,8 @@ struct ActivationParam : ParamBase {
float
relu_threshold
{
1.0
f
};
float
relu_threshold
{
1.0
f
};
// elu
// elu
float
Elu_alpha
{
1.0
f
};
float
Elu_alpha
{
1.0
f
};
// relu6
float
threshold
{
6.0
f
};
///////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////
// get a vector of input tensors
// get a vector of input tensors
...
...
lite/tests/api/CMakeLists.txt
浏览文件 @
1aa706ae
if
(
LITE_WITH_ARM
)
function
(
lite_cc_test_with_model_and_data TARGET
)
lite_cc_test
(
test_transformer_with_mask_fp32_arm SRCS test_transformer_with_mask_fp32_arm.cc
if
(
NOT WITH_TESTING
)
return
()
endif
()
set
(
options
""
)
set
(
oneValueArgs MODEL DATA CONFIG ARGS
)
set
(
multiValueArgs
""
)
cmake_parse_arguments
(
args
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
set
(
ARGS
""
)
if
(
DEFINED args_MODEL
)
set
(
ARGS
"
${
ARGS
}
--model_dir=
${
LITE_MODEL_DIR
}
/
${
args_MODEL
}
"
)
endif
()
if
(
DEFINED args_DATA
)
set
(
ARGS
"
${
ARGS
}
--data_dir=
${
LITE_MODEL_DIR
}
/
${
args_DATA
}
"
)
endif
()
if
(
DEFINED args_CONFIG
)
set
(
ARGS
"
${
ARGS
}
--config_dir=
${
LITE_MODEL_DIR
}
/
${
args_CONFIG
}
"
)
endif
()
if
(
DEFINED args_ARGS
)
set
(
ARGS
"
${
ARGS
}
${
args_ARGS
}
"
)
endif
()
lite_cc_test
(
${
TARGET
}
SRCS
${
TARGET
}
.cc
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
ARM_DEPS
${
arm_kernels
}
ARM_DEPS
${
arm_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/transformer_with_mask_fp32 SERIAL
)
X86_DEPS
${
x86_kernels
}
if
(
WITH_TESTING
)
NPU_DEPS
${
npu_kernels
}
${
npu_bridges
}
add_dependencies
(
test_transformer_with_mask_fp32_arm extern_lite_download_transformer_with_mask_fp32_tar_gz
)
HUAWEI_ASCEND_NPU_DEPS
${
huawei_ascend_npu_kernels
}
${
huawei_ascend_npu_bridges
}
XPU_DEPS
${
xpu_kernels
}
${
xpu_bridges
}
APU_DEPS
${
apu_kernels
}
${
apu_bridges
}
RKNPU_DEPS
${
rknpu_kernels
}
${
rknpu_bridges
}
BM_DEPS
${
bm_kernels
}
${
bm_bridges
}
MLU_DEPS
${
mlu_kernels
}
${
mlu_bridges
}
ARGS
${
ARGS
}
SERIAL
)
if
(
DEFINED args_MODEL
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
args_MODEL
}
_tar_gz
)
endif
()
endif
()
endif
()
if
(
DEFINED args_DATA
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
args_DATA
}
_tar_gz
)
function
(
xpu_x86_without_xtcl_test TARGET MODEL DATA
)
if
(
${
DATA
}
STREQUAL
""
)
lite_cc_test
(
${
TARGET
}
SRCS
${
TARGET
}
.cc
DEPS mir_passes lite_api_test_helper paddle_api_full paddle_api_light gflags utils
${
ops
}
${
host_kernels
}
${
x86_kernels
}
${
xpu_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/
${
MODEL
}
)
else
()
lite_cc_test
(
${
TARGET
}
SRCS
${
TARGET
}
.cc
DEPS mir_passes lite_api_test_helper paddle_api_full paddle_api_light gflags utils
${
ops
}
${
host_kernels
}
${
x86_kernels
}
${
xpu_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/
${
MODEL
}
--data_dir=
${
LITE_MODEL_DIR
}
/
${
DATA
}
)
endif
()
endif
()
if
(
DEFINED args_CONFIG
)
if
(
WITH_TESTING
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
args_CONFIG
}
_tar_gz
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
MODEL
}
_tar_gz
)
if
(
NOT
${
DATA
}
STREQUAL
""
)
add_dependencies
(
${
TARGET
}
extern_lite_download_
${
DATA
}
_tar_gz
)
endif
()
endif
()
endif
()
endfunction
()
endfunction
()
if
(
LITE_WITH_ARM
)
lite_cc_test_with_model_and_data
(
test_transformer_with_mask_fp32_arm MODEL transformer_with_mask_fp32 ARGS
)
endif
()
if
(
LITE_WITH_NPU
)
lite_cc_test_with_model_and_data
(
test_mobilenetv1_fp32_huawei_kirin_npu MODEL mobilenet_v1 DATA ILSVRC2012_small
)
lite_cc_test_with_model_and_data
(
test_mobilenetv2_fp32_huawei_kirin_npu MODEL mobilenet_v2_relu DATA ILSVRC2012_small
)
lite_cc_test_with_model_and_data
(
test_resnet50_fp32_huawei_kirin_npu MODEL resnet50 DATA ILSVRC2012_small
)
endif
()
if
(
LITE_WITH_XPU AND NOT LITE_WITH_XTCL
)
if
(
LITE_WITH_XPU AND NOT LITE_WITH_XTCL
)
xpu_x86_without_xtcl_test
(
test_resnet50_fp32_xpu resnet50
ILSVRC2012_small
)
lite_cc_test_with_model_and_data
(
test_resnet50_fp32_xpu MODEL resnet50 DATA
ILSVRC2012_small
)
xpu_x86_without_xtcl_test
(
test_googlenet_fp32_xpu GoogLeNet
ILSVRC2012_small
)
lite_cc_test_with_model_and_data
(
test_googlenet_fp32_xpu MODEL GoogLeNet DATA
ILSVRC2012_small
)
xpu_x86_without_xtcl_test
(
test_vgg19_fp32_xpu VGG19
ILSVRC2012_small
)
lite_cc_test_with_model_and_data
(
test_vgg19_fp32_xpu MODEL VGG19 DATA
ILSVRC2012_small
)
xpu_x86_without_xtcl_test
(
test_ernie_fp32_xpu ernie
bert_data
)
lite_cc_test_with_model_and_data
(
test_ernie_fp32_xpu MODEL ernie DATA
bert_data
)
xpu_x86_without_xtcl_test
(
test_bert_fp32_xpu bert
bert_data
)
lite_cc_test_with_model_and_data
(
test_bert_fp32_xpu MODEL bert DATA
bert_data
)
endif
()
endif
()
if
(
LITE_WITH_RKNPU
)
if
(
LITE_WITH_RKNPU
)
lite_cc_test
(
test_mobilenetv1_int8_rknpu SRCS test_mobilenetv1_int8_rknpu.cc
lite_cc_test_with_model_and_data
(
test_mobilenetv1_int8_rockchip_npu MODEL mobilenet_v1_int8_for_rockchip_npu DATA ILSVRC2012_small
)
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
RKNPU_DEPS
${
rknpu_kernels
}
${
rknpu_bridges
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/MobilenetV1_full_quant SERIAL
)
endif
()
endif
()
if
(
LITE_WITH_APU
)
if
(
LITE_WITH_APU
)
lite_cc_test
(
test_mobilenetv1_int8_apu SRCS test_mobilenetv1_int8_apu.cc
lite_cc_test_with_model_and_data
(
test_mobilenetv1_int8_mediatek_apu MODEL mobilenet_v1_int8_for_mediatek_apu DATA ILSVRC2012_small
)
DEPS
${
lite_model_test_DEPS
}
paddle_api_full
APU_DEPS
${
apu_kernels
}
${
apu_bridges
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/MobilenetV1_full_quant SERIAL
)
endif
()
endif
()
lite/tests/api/test_mobilenetv1_fp32_huawei_kirin_npu.cc
0 → 100644
浏览文件 @
1aa706ae
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
MobileNetV1
,
test_mobilenetv1_fp32_huawei_kirin_npu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kNPU
),
PRECISION
(
kFloat
)}});
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GE
(
out_accuracy
,
0.57
f
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/api/test_mobilenetv1_int8_apu.cc
已删除
100644 → 0
浏览文件 @
5c265189
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fstream>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
using
namespace
paddle
::
lite_api
;
// NOLINT
inline
double
GetCurrentUS
()
{
struct
timeval
time
;
gettimeofday
(
&
time
,
NULL
);
return
1e+6
*
time
.
tv_sec
+
time
.
tv_usec
;
}
inline
int64_t
ShapeProduction
(
std
::
vector
<
int64_t
>
shape
)
{
int64_t
s
=
1
;
for
(
int64_t
dim
:
shape
)
{
s
*=
dim
;
}
return
s
;
}
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
<
2
)
{
std
::
cerr
<<
"[ERROR] usage: ./"
<<
argv
[
0
]
<<
" model_dir [thread_num] [warmup_times] [repeat_times] "
"[input_data_path] [output_data_path]"
<<
std
::
endl
;
return
-
1
;
}
std
::
string
model_dir
=
argv
[
1
];
int
thread_num
=
1
;
if
(
argc
>
2
)
{
thread_num
=
atoi
(
argv
[
2
]);
}
int
warmup_times
=
5
;
if
(
argc
>
3
)
{
warmup_times
=
atoi
(
argv
[
3
]);
}
int
repeat_times
=
10
;
if
(
argc
>
4
)
{
repeat_times
=
atoi
(
argv
[
4
]);
}
std
::
string
input_data_path
;
if
(
argc
>
5
)
{
input_data_path
=
argv
[
5
];
}
std
::
string
output_data_path
;
if
(
argc
>
6
)
{
output_data_path
=
argv
[
6
];
}
paddle
::
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
model_dir
);
config
.
set_threads
(
thread_num
);
config
.
set_power_mode
(
paddle
::
lite_api
::
LITE_POWER_HIGH
);
config
.
set_valid_places
(
{
paddle
::
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
)},
paddle
::
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)},
paddle
::
lite_api
::
Place
{
TARGET
(
kAPU
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)}});
auto
predictor
=
paddle
::
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
unique_ptr
<
paddle
::
lite_api
::
Tensor
>
input_tensor
(
std
::
move
(
predictor
->
GetInput
(
0
)));
input_tensor
->
Resize
({
1
,
3
,
224
,
224
});
auto
input_data
=
input_tensor
->
mutable_data
<
float
>
();
auto
input_size
=
ShapeProduction
(
input_tensor
->
shape
());
// test loop
int
total_imgs
=
500
;
float
test_num
=
0
;
float
top1_num
=
0
;
float
top5_num
=
0
;
int
output_len
=
1000
;
std
::
vector
<
int
>
index
(
1000
);
bool
debug
=
true
;
// false;
int
show_step
=
500
;
for
(
int
i
=
0
;
i
<
total_imgs
;
i
++
)
{
// set input
std
::
string
filename
=
input_data_path
+
"/"
+
std
::
to_string
(
i
);
std
::
ifstream
fs
(
filename
,
std
::
ifstream
::
binary
);
if
(
!
fs
.
is_open
())
{
std
::
cout
<<
"open input file fail."
;
}
auto
input_data_tmp
=
input_data
;
for
(
int
i
=
0
;
i
<
input_size
;
++
i
)
{
fs
.
read
(
reinterpret_cast
<
char
*>
(
input_data_tmp
),
sizeof
(
*
input_data_tmp
));
input_data_tmp
++
;
}
int
label
=
0
;
fs
.
read
(
reinterpret_cast
<
char
*>
(
&
label
),
sizeof
(
label
));
fs
.
close
();
if
(
debug
&&
i
%
show_step
==
0
)
{
std
::
cout
<<
"input data:"
<<
std
::
endl
;
std
::
cout
<<
input_data
[
0
]
<<
" "
<<
input_data
[
10
]
<<
" "
<<
input_data
[
input_size
-
1
]
<<
std
::
endl
;
std
::
cout
<<
"label:"
<<
label
<<
std
::
endl
;
}
// run
predictor
->
Run
();
auto
output0
=
predictor
->
GetOutput
(
0
);
auto
output0_data
=
output0
->
data
<
float
>
();
// get output
std
::
iota
(
index
.
begin
(),
index
.
end
(),
0
);
std
::
stable_sort
(
index
.
begin
(),
index
.
end
(),
[
output0_data
](
size_t
i1
,
size_t
i2
)
{
return
output0_data
[
i1
]
>
output0_data
[
i2
];
});
test_num
++
;
if
(
label
==
index
[
0
])
{
top1_num
++
;
}
for
(
int
i
=
0
;
i
<
5
;
i
++
)
{
if
(
label
==
index
[
i
])
{
top5_num
++
;
}
}
if
(
debug
&&
i
%
show_step
==
0
)
{
std
::
cout
<<
index
[
0
]
<<
" "
<<
index
[
1
]
<<
" "
<<
index
[
2
]
<<
" "
<<
index
[
3
]
<<
" "
<<
index
[
4
]
<<
std
::
endl
;
std
::
cout
<<
output0_data
[
index
[
0
]]
<<
" "
<<
output0_data
[
index
[
1
]]
<<
" "
<<
output0_data
[
index
[
2
]]
<<
" "
<<
output0_data
[
index
[
3
]]
<<
" "
<<
output0_data
[
index
[
4
]]
<<
std
::
endl
;
std
::
cout
<<
output0_data
[
630
]
<<
std
::
endl
;
}
if
(
i
%
show_step
==
0
)
{
std
::
cout
<<
"step "
<<
i
<<
"; top1 acc:"
<<
top1_num
/
test_num
<<
"; top5 acc:"
<<
top5_num
/
test_num
<<
std
::
endl
;
}
}
std
::
cout
<<
"final result:"
<<
std
::
endl
;
std
::
cout
<<
"top1 acc:"
<<
top1_num
/
test_num
<<
std
::
endl
;
std
::
cout
<<
"top5 acc:"
<<
top5_num
/
test_num
<<
std
::
endl
;
return
0
;
}
lite/tests/api/test_mobilenetv1_int8_mediatek_apu.cc
0 → 100644
浏览文件 @
1aa706ae
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
MobileNetV1
,
test_mobilenetv1_int8_mediatek_apu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
)},
lite_api
::
Place
{
TARGET
(
kAPU
),
PRECISION
(
kInt8
)}});
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GE
(
out_accuracy
,
0.55
f
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/api/test_mobilenetv1_int8_rknpu.cc
已删除
100644 → 0
浏览文件 @
5c265189
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/time.h>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
inline
double
GetCurrentUS
()
{
struct
timeval
time
;
gettimeofday
(
&
time
,
NULL
);
return
1e+6
*
time
.
tv_sec
+
time
.
tv_usec
;
}
inline
int64_t
ShapeProduction
(
std
::
vector
<
int64_t
>
shape
)
{
int64_t
s
=
1
;
for
(
int64_t
dim
:
shape
)
{
s
*=
dim
;
}
return
s
;
}
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
<
2
)
{
std
::
cerr
<<
"[ERROR] usage: ./"
<<
argv
[
0
]
<<
" model_dir [thread_num] [warmup_times] [repeat_times] "
"[input_data_path] [output_data_path]"
<<
std
::
endl
;
return
-
1
;
}
std
::
string
model_dir
=
argv
[
1
];
int
thread_num
=
1
;
if
(
argc
>
2
)
{
thread_num
=
atoi
(
argv
[
2
]);
}
int
warmup_times
=
5
;
if
(
argc
>
3
)
{
warmup_times
=
atoi
(
argv
[
3
]);
}
int
repeat_times
=
10
;
if
(
argc
>
4
)
{
repeat_times
=
atoi
(
argv
[
4
]);
}
std
::
string
input_data_path
;
if
(
argc
>
5
)
{
input_data_path
=
argv
[
5
];
}
std
::
string
output_data_path
;
if
(
argc
>
6
)
{
output_data_path
=
argv
[
6
];
}
paddle
::
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
model_dir
);
config
.
set_threads
(
thread_num
);
config
.
set_power_mode
(
paddle
::
lite_api
::
LITE_POWER_HIGH
);
config
.
set_valid_places
(
{
paddle
::
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
)},
paddle
::
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)},
paddle
::
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)},
paddle
::
lite_api
::
Place
{
TARGET
(
kRKNPU
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)}});
auto
predictor
=
paddle
::
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
unique_ptr
<
paddle
::
lite_api
::
Tensor
>
input_tensor
(
std
::
move
(
predictor
->
GetInput
(
0
)));
input_tensor
->
Resize
({
1
,
3
,
224
,
224
});
auto
input_data
=
input_tensor
->
mutable_data
<
float
>
();
auto
input_size
=
ShapeProduction
(
input_tensor
->
shape
());
if
(
input_data_path
.
empty
())
{
for
(
int
i
=
0
;
i
<
input_size
;
i
++
)
{
input_data
[
i
]
=
1
;
}
}
else
{
std
::
fstream
fs
(
input_data_path
,
std
::
ios
::
in
);
if
(
!
fs
.
is_open
())
{
std
::
cerr
<<
"open input data file failed."
<<
std
::
endl
;
return
-
1
;
}
for
(
int
i
=
0
;
i
<
input_size
;
i
++
)
{
fs
>>
input_data
[
i
];
}
}
for
(
int
i
=
0
;
i
<
warmup_times
;
++
i
)
{
predictor
->
Run
();
}
auto
start
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat_times
;
++
i
)
{
predictor
->
Run
();
}
std
::
cout
<<
"Model: "
<<
model_dir
<<
", threads num "
<<
thread_num
<<
", warmup times: "
<<
warmup_times
<<
", repeat times: "
<<
repeat_times
<<
", spend "
<<
(
GetCurrentUS
()
-
start
)
/
repeat_times
/
1000.0
<<
" ms in average."
<<
std
::
endl
;
std
::
unique_ptr
<
const
paddle
::
lite_api
::
Tensor
>
output_tensor
(
std
::
move
(
predictor
->
GetOutput
(
0
)));
auto
output_data
=
output_tensor
->
data
<
float
>
();
auto
output_size
=
ShapeProduction
(
output_tensor
->
shape
());
std
::
cout
<<
"output data:"
;
for
(
int
i
=
0
;
i
<
output_size
;
i
+=
100
)
{
std
::
cout
<<
"["
<<
i
<<
"] "
<<
output_data
[
i
]
<<
std
::
endl
;
}
return
0
;
}
lite/tests/api/test_mobilenetv1_int8_rockchip_npu.cc
0 → 100644
浏览文件 @
1aa706ae
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
MobileNetV1
,
test_mobilenetv1_int8_rockchip_apu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
)},
lite_api
::
Place
{
TARGET
(
kRKNPU
),
PRECISION
(
kInt8
)}});
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GE
(
out_accuracy
,
0.52
f
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/api/test_mobilenetv2_fp32_huawei_kirin_npu.cc
0 → 100644
浏览文件 @
1aa706ae
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
MobileNetV2
,
test_mobilenetv2_fp32_huawei_kirin_npu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kNPU
),
PRECISION
(
kFloat
)}});
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GE
(
out_accuracy
,
0.57
f
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/api/test_resnet50_fp32_huawei_kirin_npu.cc
0 → 100644
浏览文件 @
1aa706ae
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/tests/api/ILSVRC2012_utility.h"
#include "lite/utils/cp_logging.h"
DEFINE_string
(
data_dir
,
""
,
"data dir"
);
DEFINE_int32
(
iteration
,
100
,
"iteration times to run"
);
DEFINE_int32
(
batch
,
1
,
"batch of image"
);
DEFINE_int32
(
channel
,
3
,
"image channel"
);
namespace
paddle
{
namespace
lite
{
TEST
(
ResNet50
,
test_resnet50_fp32_huawei_kirin_npu
)
{
lite_api
::
CxxConfig
config
;
config
.
set_model_dir
(
FLAGS_model_dir
);
config
.
set_valid_places
({
lite_api
::
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
lite_api
::
Place
{
TARGET
(
kNPU
),
PRECISION
(
kFloat
)}});
auto
predictor
=
lite_api
::
CreatePaddlePredictor
(
config
);
std
::
string
raw_data_dir
=
FLAGS_data_dir
+
std
::
string
(
"/raw_data"
);
std
::
vector
<
int
>
input_shape
{
FLAGS_batch
,
FLAGS_channel
,
FLAGS_im_width
,
FLAGS_im_height
};
auto
raw_data
=
ReadRawData
(
raw_data_dir
,
input_shape
,
FLAGS_iteration
);
int
input_size
=
1
;
for
(
auto
i
:
input_shape
)
{
input_size
*=
i
;
}
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
j
=
0
;
j
<
input_size
;
j
++
)
{
data
[
j
]
=
0.
f
;
}
predictor
->
Run
();
}
std
::
vector
<
std
::
vector
<
float
>>
out_rets
;
out_rets
.
resize
(
FLAGS_iteration
);
double
cost_time
=
0
;
for
(
size_t
i
=
0
;
i
<
raw_data
.
size
();
++
i
)
{
auto
input_tensor
=
predictor
->
GetInput
(
0
);
input_tensor
->
Resize
(
std
::
vector
<
int64_t
>
(
input_shape
.
begin
(),
input_shape
.
end
()));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
memcpy
(
data
,
raw_data
[
i
].
data
(),
sizeof
(
float
)
*
input_size
);
double
start
=
GetCurrentUS
();
predictor
->
Run
();
cost_time
+=
GetCurrentUS
()
-
start
;
auto
output_tensor
=
predictor
->
GetOutput
(
0
);
auto
output_shape
=
output_tensor
->
shape
();
auto
output_data
=
output_tensor
->
data
<
float
>
();
ASSERT_EQ
(
output_shape
.
size
(),
2UL
);
ASSERT_EQ
(
output_shape
[
0
],
1
);
ASSERT_EQ
(
output_shape
[
1
],
1000
);
int
output_size
=
output_shape
[
0
]
*
output_shape
[
1
];
out_rets
[
i
].
resize
(
output_size
);
memcpy
(
&
(
out_rets
[
i
].
at
(
0
)),
output_data
,
sizeof
(
float
)
*
output_size
);
}
LOG
(
INFO
)
<<
"================== Speed Report ==================="
;
LOG
(
INFO
)
<<
"Model: "
<<
FLAGS_model_dir
<<
", threads num "
<<
FLAGS_threads
<<
", warmup: "
<<
FLAGS_warmup
<<
", batch: "
<<
FLAGS_batch
<<
", iteration: "
<<
FLAGS_iteration
<<
", spend "
<<
cost_time
/
FLAGS_iteration
/
1000.0
<<
" ms in average."
;
std
::
string
labels_dir
=
FLAGS_data_dir
+
std
::
string
(
"/labels.txt"
);
float
out_accuracy
=
CalOutAccuracy
(
out_rets
,
labels_dir
);
ASSERT_GE
(
out_accuracy
,
0.64
f
);
}
}
// namespace lite
}
// namespace paddle
lite/tests/kernels/CMakeLists.txt
浏览文件 @
1aa706ae
此差异已折叠。
点击以展开。
lite/tests/kernels/activation_compute_test.cc
浏览文件 @
1aa706ae
...
@@ -58,6 +58,7 @@ class ActivationComputeTester : public arena::TestCase {
...
@@ -58,6 +58,7 @@ class ActivationComputeTester : public arena::TestCase {
float
hard_swish_offset
=
3.0
;
float
hard_swish_offset
=
3.0
;
float
relu_threshold_
=
1.0
;
float
relu_threshold_
=
1.0
;
float
elu_alpha_
=
1.0
;
float
elu_alpha_
=
1.0
;
float
threshold_
=
6.0
;
DDim
dims_
{{
1
}};
DDim
dims_
{{
1
}};
std
::
string
type_
=
""
;
std
::
string
type_
=
""
;
activation_type_test
act_type_
=
RELU
;
activation_type_test
act_type_
=
RELU
;
...
@@ -170,7 +171,8 @@ class ActivationComputeTester : public arena::TestCase {
...
@@ -170,7 +171,8 @@ class ActivationComputeTester : public arena::TestCase {
case
RELU6
:
{
case
RELU6
:
{
for
(
int
i
=
0
;
i
<
dims_
.
production
();
i
++
)
{
for
(
int
i
=
0
;
i
<
dims_
.
production
();
i
++
)
{
output_data
[
i
]
=
x_data
[
i
]
>
0.
f
?
x_data
[
i
]
:
0.
f
;
output_data
[
i
]
=
x_data
[
i
]
>
0.
f
?
x_data
[
i
]
:
0.
f
;
output_data
[
i
]
=
output_data
[
i
]
<
6.0
?
output_data
[
i
]
:
6.0
;
output_data
[
i
]
=
output_data
[
i
]
<
threshold_
?
output_data
[
i
]
:
threshold_
;
}
}
break
;
break
;
}
}
...
@@ -273,6 +275,9 @@ class ActivationComputeTester : public arena::TestCase {
...
@@ -273,6 +275,9 @@ class ActivationComputeTester : public arena::TestCase {
if
(
act_type_
==
ELU
)
{
if
(
act_type_
==
ELU
)
{
op_desc
->
SetAttr
(
"alpha"
,
elu_alpha_
);
op_desc
->
SetAttr
(
"alpha"
,
elu_alpha_
);
}
}
if
(
act_type_
==
RELU6
)
{
op_desc
->
SetAttr
(
"threshold"
,
threshold_
);
}
}
}
void
PrepareData
()
override
{
void
PrepareData
()
override
{
...
@@ -510,6 +515,8 @@ TEST(Activation_relu6, precision) {
...
@@ -510,6 +515,8 @@ TEST(Activation_relu6, precision) {
#elif defined(LITE_WITH_HUAWEI_ASCEND_NPU)
#elif defined(LITE_WITH_HUAWEI_ASCEND_NPU)
place
=
TARGET
(
kHuaweiAscendNPU
);
place
=
TARGET
(
kHuaweiAscendNPU
);
abs_error
=
1e-2
;
// precision_mode default is force_fp16
abs_error
=
1e-2
;
// precision_mode default is force_fp16
#elif defined(LITE_WITH_X86)
place
=
TARGET
(
kX86
);
#else
#else
return
;
return
;
#endif
#endif
...
...
lite/tests/kernels/interp_compute_test.cc
浏览文件 @
1aa706ae
...
@@ -416,6 +416,10 @@ void TestInterpAlignMode(Place place, float abs_error = 2e-5) {
...
@@ -416,6 +416,10 @@ void TestInterpAlignMode(Place place, float abs_error = 2e-5) {
for
(
auto
x_dims
:
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
3
,
4
,
8
,
9
}})
{
for
(
auto
x_dims
:
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
3
,
4
,
8
,
9
}})
{
for
(
bool
align_corners
:
{
true
,
false
})
{
for
(
bool
align_corners
:
{
true
,
false
})
{
for
(
int
align_mode
:
{
0
,
1
})
{
for
(
int
align_mode
:
{
0
,
1
})
{
// may exist bug in arm kernel
if
(
place
==
TARGET
(
kARM
)
&&
align_mode
==
1
&&
!
align_corners
)
{
continue
;
}
// Ascend NPU DDK
// Ascend NPU DDK
if
(
place
==
TARGET
(
kHuaweiAscendNPU
)
&&
align_mode
==
0
&&
if
(
place
==
TARGET
(
kHuaweiAscendNPU
)
&&
align_mode
==
0
&&
!
align_corners
)
{
!
align_corners
)
{
...
...
lite/tests/kernels/reduce_mean_compute_test.cc
浏览文件 @
1aa706ae
...
@@ -333,9 +333,10 @@ void test_reduce_mean(Place place) {
...
@@ -333,9 +333,10 @@ void test_reduce_mean(Place place) {
}
}
TEST
(
ReduceMean
,
precision
)
{
TEST
(
ReduceMean
,
precision
)
{
// #ifdef LITE_WITH_X86
#ifdef LITE_WITH_X86
// Place place(TARGET(kX86));
Place
place
(
TARGET
(
kX86
));
// #endif
test_reduce_mean
(
place
);
#endif
#ifdef LITE_WITH_ARM
#ifdef LITE_WITH_ARM
Place
place
(
TARGET
(
kARM
));
Place
place
(
TARGET
(
kARM
));
test_reduce_mean
(
place
);
test_reduce_mean
(
place
);
...
...
lite/tests/math/conv_compute_test.cc
浏览文件 @
1aa706ae
...
@@ -306,8 +306,7 @@ void test_conv_fp32(const std::vector<DDim>& input_dims,
...
@@ -306,8 +306,7 @@ void test_conv_fp32(const std::vector<DDim>& input_dims,
const
float
leakey_relu_scale
)
{}
const
float
leakey_relu_scale
)
{}
#endif // LITE_WITH_ARM
#endif // LITE_WITH_ARM
// TODO(chenjiaoAngel): fix multi-threds, diff: 3x3 depthwise conv
#if 0 // 3x3dw if only run one case. its ok
#if 0 // 3x3dw
TEST(TestConv3x3DW, test_conv3x3_depthwise) {
TEST(TestConv3x3DW, test_conv3x3_depthwise) {
if (FLAGS_basic_test) {
if (FLAGS_basic_test) {
for (auto& stride : {1, 2}) {
for (auto& stride : {1, 2}) {
...
@@ -325,13 +324,6 @@ TEST(TestConv3x3DW, test_conv3x3_depthwise) {
...
@@ -325,13 +324,6 @@ TEST(TestConv3x3DW, test_conv3x3_depthwise) {
dims.push_back(DDim({batch, c, h, h}));
dims.push_back(DDim({batch, c, h, h}));
}
}
}
}
#ifdef __aarch64__
#else
if (stride == 1 && (pad_bottom == 2 || pad_right == 2 ||
pad_top == 2 || pad_left == 2)) {
continue;
}
#endif
const float leakey_relu_scale = 8.88;
const float leakey_relu_scale = 8.88;
test_conv_fp32(dims,
test_conv_fp32(dims,
weights_dim,
weights_dim,
...
...
lite/tools/ci_build.sh
浏览文件 @
1aa706ae
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录