Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
1a9928a9
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1a9928a9
编写于
12月 18, 2019
作者:
M
MyPandaShaoxiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
style: style fix
test=develop
上级
1893489c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
1 addition
and
87 deletion
+1
-87
lite/kernels/fpga/calib_compute.h
lite/kernels/fpga/calib_compute.h
+0
-0
lite/kernels/fpga/gru_compute.cc
lite/kernels/fpga/gru_compute.cc
+0
-15
lite/kernels/fpga/gru_compute.h
lite/kernels/fpga/gru_compute.h
+0
-1
lite/kernels/fpga/io_copy_compute.cc
lite/kernels/fpga/io_copy_compute.cc
+0
-3
lite/kernels/fpga/prior_box_compute.cc
lite/kernels/fpga/prior_box_compute.cc
+0
-17
lite/kernels/fpga/reshape_compute.cc
lite/kernels/fpga/reshape_compute.cc
+0
-27
lite/kernels/fpga/transpose_compute.cc
lite/kernels/fpga/transpose_compute.cc
+1
-24
未找到文件。
lite/kernels/fpga/calib_compute.h
100755 → 100644
浏览文件 @
1a9928a9
文件模式从 100755 更改为 100644
lite/kernels/fpga/gru_compute.cc
浏览文件 @
1a9928a9
...
...
@@ -12,7 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <unistd.h>
// #include <chrono>
#include <iostream>
#include <string>
#include <vector>
...
...
@@ -84,7 +83,6 @@ void GRUCompute::PrepareForRun() {
void
GRUCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
param
.
hidden
->
mutable_data
<
float
>
();
// auto& ctx = this->ctx_->template As<ARMContext>();
// inputs
auto
input
=
param
.
input
;
auto
h0
=
param
.
h0
;
...
...
@@ -106,8 +104,6 @@ void GRUCompute::Run() {
lite
::
arm
::
math
::
LoDTensor2BatchFunctor
<
float
>
to_batch
;
to_batch
(
*
input
,
batch_gate
,
true
,
param
.
is_reverse
);
// 1.
save_tensor
(
batch_gate
,
"_batch_gate.txt"
);
if
(
bias
)
{
auto
bias_data
=
bias
->
data
<
float
>
();
// 2.
lite
::
arm
::
math
::
gru_add_with_bias
(
batch_gate_data
,
...
...
@@ -115,9 +111,6 @@ void GRUCompute::Run() {
batch_gate_data
,
batch_size
,
frame_size
*
3
);
// save_tensor(const_cast<Tensor*>(bias), "_bias.txt");
save_tensor
(
batch_gate
,
"_after_bias.txt"
);
std
::
cout
<<
"================= bias =================
\n
"
;
}
zynqmp
::
GRUTensors
gru_tensors
;
...
...
@@ -137,7 +130,6 @@ void GRUCompute::Run() {
// //3.
gru_value
.
prev_out_value
=
ordered_h0
.
mutable_data
<
float
>
();
gru_tensors
.
pre_output
=
ordered_h0
.
ZynqTensor
();
std
::
cout
<<
"================= h0 =================
\n
"
;
}
else
{
gru_value
.
prev_out_value
=
nullptr
;
gru_tensors
.
pre_output
=
nullptr
;
...
...
@@ -153,9 +145,6 @@ void GRUCompute::Run() {
zynqmp
::
Tensor
float_input
;
zynqmp
::
Tensor
hidden_out
;
std
::
cout
<<
"seq_len::"
<<
seq_len
<<
std
::
endl
;
// exit(-1);
for
(
size_t
n
=
0
;
n
<
seq_len
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
...
...
@@ -180,9 +169,6 @@ void GRUCompute::Run() {
float
*
hidden_data
=
hidden_out
.
mutableData
<
float
>
(
zynqmp
::
FP32
,
float_input_shape
);
// memcpy(hidden_prev_data, )
// zynqmp::Tensor* gate = pe_.gate();
gru_tensors
.
gate
=
&
float_input
;
gru_tensors
.
output
=
&
hidden_out
;
...
...
@@ -196,7 +182,6 @@ void GRUCompute::Run() {
// TODO(chonwhite): copy data back to original tensor;
gru_tensors
.
pre_output
=
gru_tensors
.
output
;
// gru_value.prev_out_value = gru_value.output_value;
}
lite
::
arm
::
math
::
Batch2LoDTensorFunctor
<
float
>
to_seq
;
// 5.
*
(
batch_hidden
->
mutable_lod
())
=
batch_gate
->
lod
();
...
...
lite/kernels/fpga/gru_compute.h
浏览文件 @
1a9928a9
...
...
@@ -46,7 +46,6 @@ class GRUCompute
zynqmp
::
ElementwiseAddPE
bias_ew_pe_
;
zynqmp
::
FullyConnectedPE
pre_out_pe_
;
zynqmp
::
FullyConnectedPE
reset_out_pe_
;
// zynqmp::Tensor input_;
zynqmp
::
GRUPE
pe_
;
};
...
...
lite/kernels/fpga/io_copy_compute.cc
浏览文件 @
1a9928a9
...
...
@@ -118,9 +118,6 @@ class IoCopyFpgaToHostCompute
param
.
y
->
ZynqTensor
()
->
flush
();
auto
out_lod
=
param
.
y
->
mutable_lod
();
*
out_lod
=
param
.
x
->
lod
();
// param.x->ZynqTensor()->saveToFile("io_x", true);
// param.y->ZynqTensor()->saveToFile("io_y", true);
}
std
::
string
doc
()
const
override
{
return
"Copy IO from FPGA to HOST"
;
}
...
...
lite/kernels/fpga/prior_box_compute.cc
浏览文件 @
1a9928a9
...
...
@@ -78,7 +78,6 @@ void PriorBoxCompute::PrepareForRun() {
param
.
boxes
->
mutable_data
<
float
>
();
param
.
variances
->
mutable_data
<
float
>
();
// ====================================================
zynqmp
::
PriorBoxParam
&
priobox_param
=
pe_
.
param
();
priobox_param
.
input
=
param
.
input
->
ZynqTensor
();
priobox_param
.
image
=
param
.
image
->
ZynqTensor
();
...
...
@@ -132,19 +131,3 @@ REGISTER_LITE_KERNEL(prior_box,
.
BindOutput
(
"Boxes"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Variances"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
// REGISTER_LITE_KERNEL(prior_box,
// kFPGA,
// kFP16,
// kNHWC,
// paddle::lite::kernels::fpga::PriorBoxCompute,
// def)
// .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA),
// PRECISION(kFP16),
// DATALAYOUT(kNHWC))})
// .BindInput("Image", {LiteType::GetTensorTy(TARGET(kFPGA),
// PRECISION(kFP16),
// DATALAYOUT(kNHWC))})
// .BindOutput("Boxes", {LiteType::GetTensorTy(TARGET(kARM))})
// .BindOutput("Variances", {LiteType::GetTensorTy(TARGET(kARM))})
// .Finalize();
lite/kernels/fpga/reshape_compute.cc
浏览文件 @
1a9928a9
...
...
@@ -53,33 +53,6 @@ void ReshapeCompute::Run() {
output
->
Resize
(
output_dims
);
}
// void ReshapeComputeFpgaToHost::Run() {
// auto& param = Param<operators::ReshapeParam>();
// param.output->mutable_data<float>();
// auto x = param.x;
// // auto actual_shape = param.actual_shape;
// Tensor* actual_shape = nullptr; // TODO(chonwhite) change it.
// auto output = param.output;
// bool inplace = param.inplace;
// auto x_dims = x->dims();
// auto output_dims = output->dims();
// if (actual_shape) {
// auto actual_shape_dims = actual_shape->dims();
// auto* actual_shape_data = actual_shape->data<int>();
// auto shape = std::vector<int>(
// actual_shape_data, actual_shape_data +
// actual_shape_dims.production());
// output_dims = lite::operators::ValidateShape(shape, x_dims);
// output->Resize(output_dims);
// }
// if (inplace) {
// output->ShareDataWith(*x);
// } else {
// output->CopyDataFrom(*x);
// }
// output->Resize(output_dims);
// }
}
// namespace fpga
}
// namespace kernels
}
// namespace lite
...
...
lite/kernels/fpga/transpose_compute.cc
浏览文件 @
1a9928a9
...
...
@@ -39,11 +39,8 @@ void transposeCompute(operators::TransposeParam param) {
float_input
.
mutable_data
<
float
>
();
float_input
.
ZynqTensor
()
->
copyFrom
(
input_x
->
ZynqTensor
());
// const auto* input_x_data = input_x->data<float>();
const
auto
*
input_x_data
=
float_input
.
data
<
float
>
();
// auto& param = this->Param<param_t>();
auto
*
out
=
param
.
output
;
const
auto
axis
=
param
.
axis
;
...
...
@@ -84,10 +81,7 @@ void transposeCompute(operators::TransposeParam param) {
}
// Transpose
void
TransposeCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
// param.output->mutable_data<float16>();
}
void
TransposeCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
}
// Transpose2
void
Transpose2Compute
::
Run
()
{
...
...
@@ -97,25 +91,8 @@ void Transpose2Compute::Run() {
param
.
x
->
ZynqTensor
()
->
unalignImage
();
if
(
param
.
x
->
dims
().
size
()
!=
4
)
{
transposeCompute
(
param
);
// auto out = param.Out();
// auto out_data = out->data<half>();
// int num = input_x_dims[1];
// int channel = input_x_dims[2];
// int index = 0;
// for (int n = 0; n < num; n++) {
// for (int c = 0; c < channel; c++) {
// out_data[c * num + n] = input_x_data[n * channel + c];
// index++;
// }
// }
// param.output->ZynqTensor()->copyFrom(param.x->ZynqTensor());
}
else
{
param
.
x
->
ZynqTensor
()
->
saveToFile
(
"tx"
,
true
);
param
.
output
->
ZynqTensor
()
->
copyFrom
(
param
.
x
->
ZynqTensor
());
param
.
output
->
ZynqTensor
()
->
saveToFile
(
"to"
,
true
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录