提交 03c0f0a3 编写于 作者: Z zhangyang0701 提交者: GitHub

Merge pull request #1464 from qnqinan/develop

add deconv bn relu  op and update fetch op in FPGA track, fixed#1463
...@@ -113,6 +113,7 @@ const char *G_OP_TYPE_ROI_PERSPECTIVE = "roi_perspective_transform"; ...@@ -113,6 +113,7 @@ const char *G_OP_TYPE_ROI_PERSPECTIVE = "roi_perspective_transform";
const char *G_OP_TYPE_PAD2D = "pad2d"; const char *G_OP_TYPE_PAD2D = "pad2d";
const char *G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU = "fusion_deconv_add_bn_relu"; const char *G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU = "fusion_deconv_add_bn_relu";
const char *G_OP_TYPE_FUSION_DECONV_ADD_BN = "fusion_deconv_add_bn"; const char *G_OP_TYPE_FUSION_DECONV_ADD_BN = "fusion_deconv_add_bn";
const char *G_OP_TYPE_FUSION_DECONV_BN_RELU = "fusion_deconv_bn_relu";
std::unordered_map< std::unordered_map<
std::string, std::pair<std::vector<std::string>, std::vector<std::string>>> std::string, std::pair<std::vector<std::string>, std::vector<std::string>>>
...@@ -215,5 +216,6 @@ std::unordered_map< ...@@ -215,5 +216,6 @@ std::unordered_map<
{G_OP_TYPE_ROI_PERSPECTIVE, {{"X", "ROIs"}, {"Out"}}}, {G_OP_TYPE_ROI_PERSPECTIVE, {{"X", "ROIs"}, {"Out"}}},
{G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU, {{"Input"}, {"Out"}}}, {G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_FUSION_DECONV_ADD_BN, {{"Input"}, {"Out"}}}, {G_OP_TYPE_FUSION_DECONV_ADD_BN, {{"Input"}, {"Out"}}},
{G_OP_TYPE_FUSION_DECONV_BN_RELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_PAD2D, {{"X"}, {"Out"}}}}; {G_OP_TYPE_PAD2D, {{"X"}, {"Out"}}}};
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -202,6 +202,7 @@ extern const char *G_OP_TYPE_ROI_PERSPECTIVE; ...@@ -202,6 +202,7 @@ extern const char *G_OP_TYPE_ROI_PERSPECTIVE;
extern const char *G_OP_TYPE_PAD2D; extern const char *G_OP_TYPE_PAD2D;
extern const char *G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU; extern const char *G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU;
extern const char *G_OP_TYPE_FUSION_DECONV_ADD_BN; extern const char *G_OP_TYPE_FUSION_DECONV_ADD_BN;
extern const char *G_OP_TYPE_FUSION_DECONV_BN_RELU;
extern std::unordered_map< extern std::unordered_map<
std::string, std::pair<std::vector<std::string>, std::vector<std::string>>> std::string, std::pair<std::vector<std::string>, std::vector<std::string>>>
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVBNRELU_OP
#include "operators/fusion_deconv_bn_relu_op.h"
namespace paddle_mobile {
namespace operators {}
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
REGISTER_FUSION_MATCHER(fusion_deconv_bn_relu, ops::FusionDeconvBNReluMatcher);
#ifdef PADDLE_MOBILE_CPU
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_deconv_bn_relu, ops::FusionDeconvBNReluOp);
#endif
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVBNRELU_OP
#pragma once
#include <string>
#include <vector>
#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "operators/kernel/deconv_bn_relu_kernel.h"
namespace paddle_mobile {
namespace operators {
using std::string;
using std::vector;
class FusionDeconvBNReluMatcher : public framework::FusionOpMatcher {
public:
FusionDeconvBNReluMatcher() {
node_ = framework::Node(G_OP_TYPE_CONV_TRANSPOSE);
node_ > std::make_shared<framework::Node>(G_OP_TYPE_BATCHNORM) >
std::make_shared<framework::Node>(G_OP_TYPE_RELU);
}
void FolderNodes(
framework::Node *node,
std::vector<std::shared_ptr<framework::Node>> *removed_nodes) {
node->Folder(node_.Depth(), Type(),
{{G_OP_TYPE_BATCHNORM,
{{"Scale", "Scale"},
{"Mean", "Mean"},
{"Bias", "Bias"},
{"Variance", "Variance"}}}},
removed_nodes);
}
std::string Type() { return G_OP_TYPE_FUSION_DECONV_BN_RELU; }
};
template <typename DeviceType, typename T>
class FusionDeconvBNReluOp
: public framework::OperatorWithKernel<
DeviceType, FusionDeconvBNReluParam<DeviceType>,
operators::DeconvBNReluKernel<DeviceType, T>> {
public:
FusionDeconvBNReluOp(const string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<
DeviceType, FusionDeconvBNReluParam<DeviceType>,
operators::DeconvBNReluKernel<DeviceType, T>>(type, inputs, outputs,
attrs, scope) {}
void InferShape() const {
auto input = this->param_.Input();
auto in_dims = input->dims();
auto filter = this->param_.Filter();
auto filter_dims = filter->dims();
std::vector<int> strides = this->param_.Strides();
std::vector<int> paddings = this->param_.Paddings();
std::vector<int> dilations = this->param_.Dilations();
int groups = this->param_.Groups();
PADDLE_MOBILE_ENFORCE(
in_dims.size() == 4 || in_dims.size() == 5,
"ConvTransposeOp intput should be 4-D or 5-D tensor.");
PADDLE_MOBILE_ENFORCE(
in_dims.size() == filter_dims.size(),
"ConvTransposeOp input dimension and filter dimension "
"should be the same.");
PADDLE_MOBILE_ENFORCE(
in_dims.size() - strides.size() == 2U,
"ConvTransposeOp input dimension and strides dimension should "
"be consistent.");
PADDLE_MOBILE_ENFORCE(paddings.size() == strides.size(),
"ConvTransposeOp paddings dimension and strides "
"dimension should be the same.");
PADDLE_MOBILE_ENFORCE(paddings.size() == dilations.size(),
"ConvTransposeOp paddings dimension and dilations "
"dimension should be the same.");
PADDLE_MOBILE_ENFORCE(
in_dims[1] == filter_dims[0],
"In ConvTransposeOp, The number of input channels should "
"be equal to the number of filter's channels.");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[1] * groups});
for (size_t i = 0; i < strides.size(); ++i) {
auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
output_shape.push_back((in_dims[i + 2] - 1) * strides[i] -
2 * paddings[i] + filter_extent);
}
this->param_.Output()->Resize(framework::make_ddim(output_shape));
}
protected:
};
} // namespace operators
} // namespace paddle_mobile
#endif // FUSION_DECONV_BN_RELU_OP
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVBNRELU_OP
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using framework::OpKernelBase;
template <typename DeviceType, typename T>
class DeconvBNReluKernel
: public OpKernelBase<DeviceType, FusionDeconvBNReluParam<DeviceType>> {
public:
void Compute(const FusionDeconvBNReluParam<DeviceType> &param);
bool Init(FusionDeconvBNReluParam<DeviceType> *param);
};
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#include "operators/kernel/conv_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvKernel<FPGA, float>::Init(ConvParam<FPGA> *param) {
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::NONE;
int16_t leaky_relu_negative_slope = 0;
auto input = const_cast<Tensor *>(param->Input());
auto filter = const_cast<Tensor *>(param->Filter());
auto out = param->Output();
int channel = out->dims()[1];
auto bs_ptr =
(float *)fpga::fpga_malloc(2 * channel * sizeof(float)); // NOLINT
for (int i = 0; i < channel; i++) {
bs_ptr[i + channel] = 1;
bs_ptr[i] = 0;
}
fpga::format_conv_data(filter, out, &bs_ptr, param->Groups());
fpga::SplitConvArgs conv_arg = {0};
fpga::fill_split_arg(&conv_arg, input, out, filter, activation_enable,
leaky_relu_negative_slope, param->Groups(),
param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(conv_arg);
return true;
}
template <>
void ConvKernel<FPGA, float>::Compute(const ConvParam<FPGA> &param) {
fpga::ComputeFpgaConv(param.FpgaArgs());
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVBNRELU_OP
#include "operators/kernel/deconv_bn_relu_kernel.h"
#include <cmath>
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <>
bool DeconvBNReluKernel<FPGA, float>::Init(
FusionDeconvBNReluParam<FPGA> *param) {
// bool relu_enabled = true;
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::LEAKYRELU;
int16_t leaky_relu_negative_slope = 0;
auto input = const_cast<Tensor *>(param->Input());
const Tensor *bias = param->InputBias();
auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto out = param->Output();
auto bn_mean_ptr = param->InputMean()->data<float>();
auto bn_var_ptr = param->InputVariance()->data<float>();
auto bn_scale_ptr = param->InputScale()->data<float>();
auto bn_bias_ptr = param->InputBias()->data<float>();
const float epsilon = param->Epsilon();
PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
"Output channel should be equal to bias number");
int channel = out->dims()[1];
auto new_scale = new Tensor();
auto new_bias = new Tensor();
auto new_scale_ptr = new_scale->mutable_data<float>({channel});
auto new_bias_ptr = new_bias->mutable_data<float>({channel});
for (int i = 0; i < channel; i++) {
new_scale_ptr[i] = bn_scale_ptr[i] /
static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
}
int sub_conv_n = param->Strides()[0];
auto bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sub_conv_n * // NOLINT
sizeof(float)); // NOLINT
for (int i = 0; i < channel * sub_conv_n; i++) {
bs_ptr[i + sub_conv_n * channel] = new_scale_ptr[i % channel];
bs_ptr[i] = new_bias_ptr[i % (channel)];
}
PADDLE_MOBILE_ENFORCE(param->Strides()[1] == param->Strides()[0],
"stride_width should be equal to stride_height ");
PADDLE_MOBILE_ENFORCE(filter->dims()[2] == filter->dims()[3],
"filter width should be equal to filter height ");
PADDLE_MOBILE_ENFORCE(((filter->dims()[2] % param->Strides()[0]) == 0),
"filter axis should be the multiple of stride axis ");
if (param->Groups() == channel) {
fpga::format_DWDeconv_data(filter, out, &bs_ptr, param->Groups(),
sub_conv_n);
fpga::DWDeconvArgs DWDeconv_arg = {0};
fpga::fill_DWDeconv_arg(&DWDeconv_arg, input, out, filter,
activation_enable, leaky_relu_negative_slope,
param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(DWDeconv_arg);
} else {
fpga::format_deconv_data(filter, out, &bs_ptr, param->Groups(), sub_conv_n);
fpga::DeconvArgs deconv_arg = {0};
fpga::fill_deconv_arg(&deconv_arg, input, out, filter, activation_enable,
leaky_relu_negative_slope, param->Groups(),
param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(deconv_arg);
}
delete new_scale;
delete new_bias;
return true;
}
template <>
void DeconvBNReluKernel<FPGA, float>::Compute(
const FusionDeconvBNReluParam<FPGA> &param) {
// fpga::ComputeFpgaDeconv(param.FpgaArgs());
if (param.Groups() == param.Output()->dims()[1]) {
fpga::ComputeDWDeconv(param.FpgaDWDconvArgs());
} else {
fpga::ComputeFpgaDeconv(param.FpgaArgs());
}
}
} // namespace operators
} // namespace paddle_mobile
#endif
...@@ -46,24 +46,39 @@ bool FetchKernel<FPGA, float>::Init(FetchParam<FPGA> *param) { ...@@ -46,24 +46,39 @@ bool FetchKernel<FPGA, float>::Init(FetchParam<FPGA> *param) {
return true; return true;
} }
void dealign(float *src, float *dst, int input_c, int input_h, int input_w) {
int alignCW = paddle_mobile::fpga::align_to_x(input_c * input_w, 16);
int dealignCW = input_c * input_w;
for (int h = 0; h < input_h; ++h) {
auto input_offset = h * alignCW;
auto output_offset = h * dealignCW;
memcpy((dst + output_offset), (src + input_offset),
dealignCW * sizeof(float));
}
}
template <> template <>
void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> &param) { void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> &param) {
auto input = const_cast<Tensor *>(param.InputX()); auto input = param.InputX();
if (input->type() == typeid(float)) { if (input->type() == typeid(float)) {
auto output = param.Out(); auto output = param.Out();
output->ShareDataWith(*input); output->ShareDataWith(*input);
return; return;
} }
fpga::BypassArgs args = param.fpga_bypass_args; fpga::PerformBypass(param.fpga_bypass_args);
auto input_address = (input->data<half>()); auto outC = param.Out()->dims()[1];
args.image.address = static_cast<void *>(input_address); auto outH = param.Out()->dims()[2];
auto outW = param.Out()->dims()[3];
fpga::PerformBypass(args);
fpga::fpga_invalidate(param.fpga_bypass_args.output.address, fpga::fpga_invalidate(param.fpga_bypass_args.output.address,
param.fpga_bypass_args.image.channels * sizeof(float)); outH *
(paddle_mobile::fpga::align_to_x(outC * outW, 16)) *
sizeof(float));
// TODO(zhangyang): DEalign: get rid of extra 0 float *outdata_ptr =
reinterpret_cast<float *>(param.fpga_bypass_args.output.address);
float *data_tmp =
reinterpret_cast<float *>(malloc(outC * outH * outW * sizeof(float)));
dealign(outdata_ptr, data_tmp, outC, outH, outW);
memcpy(outdata_ptr, data_tmp, outC * outH * outW * sizeof(float));
} }
template class FetchKernel<FPGA, float>; template class FetchKernel<FPGA, float>;
......
...@@ -2535,6 +2535,62 @@ class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> { ...@@ -2535,6 +2535,62 @@ class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
RType *new_scale_; RType *new_scale_;
}; };
#endif #endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
FusionDeconvBNReluParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope)
: ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
output_ = OpParam::OutFrom<GType>(outputs, scope);
input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
momentum_ = OpParam::GetAttr<float>("momentum", attrs);
}
RType *Output() const { return output_; }
const RType *InputBias() const { return input_bias_; }
const RType *InputMean() const { return input_mean_; }
const RType *InputScale() const { return input_scale_; }
const RType *InputVariance() const { return input_variance_; }
const float &Epsilon() const { return epsilon_; }
const float &Momentum() const { return momentum_; }
const bool &IsTest() const { return is_test_; }
void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
const RType *NewScale() const { return new_scale_; }
const RType *NewBias() const { return new_bias_; }
protected:
RType *output_;
RType *input_bias_;
RType *input_mean_;
RType *input_scale_;
RType *input_variance_;
float epsilon_;
float momentum_;
bool is_test_;
RType *new_bias_;
RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP #ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype> template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> { class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册