Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
03c0f0a3
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
03c0f0a3
编写于
3月 05, 2019
作者:
Z
zhangyang0701
提交者:
GitHub
3月 05, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1464 from qnqinan/develop
add deconv bn relu op and update fetch op in FPGA track, fixed#1463
上级
fa139e6b
6b71cb59
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
434 addition
and
9 deletion
+434
-9
src/common/types.cpp
src/common/types.cpp
+2
-0
src/common/types.h
src/common/types.h
+1
-0
src/operators/fusion_deconv_bn_relu_op.cpp
src/operators/fusion_deconv_bn_relu_op.cpp
+33
-0
src/operators/fusion_deconv_bn_relu_op.h
src/operators/fusion_deconv_bn_relu_op.h
+115
-0
src/operators/kernel/deconv_bn_relu_kernel.h
src/operators/kernel/deconv_bn_relu_kernel.h
+39
-0
src/operators/kernel/fpga/V1/conv_kernel.cpp
src/operators/kernel/fpga/V1/conv_kernel.cpp
+56
-0
src/operators/kernel/fpga/V1/deconv_bn_relu_kernel.cpp
src/operators/kernel/fpga/V1/deconv_bn_relu_kernel.cpp
+108
-0
src/operators/kernel/fpga/V1/fetch_kernel.cpp
src/operators/kernel/fpga/V1/fetch_kernel.cpp
+24
-9
src/operators/op_param.h
src/operators/op_param.h
+56
-0
未找到文件。
src/common/types.cpp
浏览文件 @
03c0f0a3
...
...
@@ -113,6 +113,7 @@ const char *G_OP_TYPE_ROI_PERSPECTIVE = "roi_perspective_transform";
const
char
*
G_OP_TYPE_PAD2D
=
"pad2d"
;
const
char
*
G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU
=
"fusion_deconv_add_bn_relu"
;
const
char
*
G_OP_TYPE_FUSION_DECONV_ADD_BN
=
"fusion_deconv_add_bn"
;
const
char
*
G_OP_TYPE_FUSION_DECONV_BN_RELU
=
"fusion_deconv_bn_relu"
;
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
string
>>>
...
...
@@ -215,5 +216,6 @@ std::unordered_map<
{
G_OP_TYPE_ROI_PERSPECTIVE
,
{{
"X"
,
"ROIs"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_DECONV_ADD_BN
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_DECONV_BN_RELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_PAD2D
,
{{
"X"
},
{
"Out"
}}}};
}
// namespace paddle_mobile
src/common/types.h
浏览文件 @
03c0f0a3
...
...
@@ -202,6 +202,7 @@ extern const char *G_OP_TYPE_ROI_PERSPECTIVE;
extern
const
char
*
G_OP_TYPE_PAD2D
;
extern
const
char
*
G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU
;
extern
const
char
*
G_OP_TYPE_FUSION_DECONV_ADD_BN
;
extern
const
char
*
G_OP_TYPE_FUSION_DECONV_BN_RELU
;
extern
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
string
>>>
...
...
src/operators/fusion_deconv_bn_relu_op.cpp
0 → 100644
浏览文件 @
03c0f0a3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVBNRELU_OP
#include "operators/fusion_deconv_bn_relu_op.h"
namespace
paddle_mobile
{
namespace
operators
{}
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
REGISTER_FUSION_MATCHER
(
fusion_deconv_bn_relu
,
ops
::
FusionDeconvBNReluMatcher
);
#ifdef PADDLE_MOBILE_CPU
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA
(
fusion_deconv_bn_relu
,
ops
::
FusionDeconvBNReluOp
);
#endif
#endif
src/operators/fusion_deconv_bn_relu_op.h
0 → 100644
浏览文件 @
03c0f0a3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVBNRELU_OP
#pragma once
#include <string>
#include <vector>
#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "operators/kernel/deconv_bn_relu_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
using
std
::
string
;
using
std
::
vector
;
class
FusionDeconvBNReluMatcher
:
public
framework
::
FusionOpMatcher
{
public:
FusionDeconvBNReluMatcher
()
{
node_
=
framework
::
Node
(
G_OP_TYPE_CONV_TRANSPOSE
);
node_
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_BATCHNORM
)
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_RELU
);
}
void
FolderNodes
(
framework
::
Node
*
node
,
std
::
vector
<
std
::
shared_ptr
<
framework
::
Node
>>
*
removed_nodes
)
{
node
->
Folder
(
node_
.
Depth
(),
Type
(),
{{
G_OP_TYPE_BATCHNORM
,
{{
"Scale"
,
"Scale"
},
{
"Mean"
,
"Mean"
},
{
"Bias"
,
"Bias"
},
{
"Variance"
,
"Variance"
}}}},
removed_nodes
);
}
std
::
string
Type
()
{
return
G_OP_TYPE_FUSION_DECONV_BN_RELU
;
}
};
template
<
typename
DeviceType
,
typename
T
>
class
FusionDeconvBNReluOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
FusionDeconvBNReluParam
<
DeviceType
>
,
operators
::
DeconvBNReluKernel
<
DeviceType
,
T
>>
{
public:
FusionDeconvBNReluOp
(
const
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
FusionDeconvBNReluParam
<
DeviceType
>
,
operators
::
DeconvBNReluKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
void
InferShape
()
const
{
auto
input
=
this
->
param_
.
Input
();
auto
in_dims
=
input
->
dims
();
auto
filter
=
this
->
param_
.
Filter
();
auto
filter_dims
=
filter
->
dims
();
std
::
vector
<
int
>
strides
=
this
->
param_
.
Strides
();
std
::
vector
<
int
>
paddings
=
this
->
param_
.
Paddings
();
std
::
vector
<
int
>
dilations
=
this
->
param_
.
Dilations
();
int
groups
=
this
->
param_
.
Groups
();
PADDLE_MOBILE_ENFORCE
(
in_dims
.
size
()
==
4
||
in_dims
.
size
()
==
5
,
"ConvTransposeOp intput should be 4-D or 5-D tensor."
);
PADDLE_MOBILE_ENFORCE
(
in_dims
.
size
()
==
filter_dims
.
size
(),
"ConvTransposeOp input dimension and filter dimension "
"should be the same."
);
PADDLE_MOBILE_ENFORCE
(
in_dims
.
size
()
-
strides
.
size
()
==
2U
,
"ConvTransposeOp input dimension and strides dimension should "
"be consistent."
);
PADDLE_MOBILE_ENFORCE
(
paddings
.
size
()
==
strides
.
size
(),
"ConvTransposeOp paddings dimension and strides "
"dimension should be the same."
);
PADDLE_MOBILE_ENFORCE
(
paddings
.
size
()
==
dilations
.
size
(),
"ConvTransposeOp paddings dimension and dilations "
"dimension should be the same."
);
PADDLE_MOBILE_ENFORCE
(
in_dims
[
1
]
==
filter_dims
[
0
],
"In ConvTransposeOp, The number of input channels should "
"be equal to the number of filter's channels."
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
1
]
*
groups
});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
auto
filter_extent
=
dilations
[
i
]
*
(
filter_dims
[
i
+
2
]
-
1
)
+
1
;
output_shape
.
push_back
((
in_dims
[
i
+
2
]
-
1
)
*
strides
[
i
]
-
2
*
paddings
[
i
]
+
filter_extent
);
}
this
->
param_
.
Output
()
->
Resize
(
framework
::
make_ddim
(
output_shape
));
}
protected:
};
}
// namespace operators
}
// namespace paddle_mobile
#endif // FUSION_DECONV_BN_RELU_OP
src/operators/kernel/deconv_bn_relu_kernel.h
0 → 100755
浏览文件 @
03c0f0a3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVBNRELU_OP
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
framework
::
OpKernelBase
;
template
<
typename
DeviceType
,
typename
T
>
class
DeconvBNReluKernel
:
public
OpKernelBase
<
DeviceType
,
FusionDeconvBNReluParam
<
DeviceType
>>
{
public:
void
Compute
(
const
FusionDeconvBNReluParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionDeconvBNReluParam
<
DeviceType
>
*
param
);
};
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/fpga/V1/conv_kernel.cpp
0 → 100644
浏览文件 @
03c0f0a3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#include "operators/kernel/conv_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
ConvKernel
<
FPGA
,
float
>::
Init
(
ConvParam
<
FPGA
>
*
param
)
{
paddle_mobile
::
fpga
::
ActivationType
activation_enable
=
paddle_mobile
::
fpga
::
NONE
;
int16_t
leaky_relu_negative_slope
=
0
;
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
int
channel
=
out
->
dims
()[
1
];
auto
bs_ptr
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
channel
*
sizeof
(
float
));
// NOLINT
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
bs_ptr
[
i
+
channel
]
=
1
;
bs_ptr
[
i
]
=
0
;
}
fpga
::
format_conv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
());
fpga
::
SplitConvArgs
conv_arg
=
{
0
};
fpga
::
fill_split_arg
(
&
conv_arg
,
input
,
out
,
filter
,
activation_enable
,
leaky_relu_negative_slope
,
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
param
->
SetFpgaArgs
(
conv_arg
);
return
true
;
}
template
<
>
void
ConvKernel
<
FPGA
,
float
>::
Compute
(
const
ConvParam
<
FPGA
>
&
param
)
{
fpga
::
ComputeFpgaConv
(
param
.
FpgaArgs
());
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/fpga/V1/deconv_bn_relu_kernel.cpp
0 → 100644
浏览文件 @
03c0f0a3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVBNRELU_OP
#include "operators/kernel/deconv_bn_relu_kernel.h"
#include <cmath>
#include "framework/operator.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
DeconvBNReluKernel
<
FPGA
,
float
>::
Init
(
FusionDeconvBNReluParam
<
FPGA
>
*
param
)
{
// bool relu_enabled = true;
paddle_mobile
::
fpga
::
ActivationType
activation_enable
=
paddle_mobile
::
fpga
::
LEAKYRELU
;
int16_t
leaky_relu_negative_slope
=
0
;
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
const
Tensor
*
bias
=
param
->
InputBias
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
auto
bn_mean_ptr
=
param
->
InputMean
()
->
data
<
float
>
();
auto
bn_var_ptr
=
param
->
InputVariance
()
->
data
<
float
>
();
auto
bn_scale_ptr
=
param
->
InputScale
()
->
data
<
float
>
();
auto
bn_bias_ptr
=
param
->
InputBias
()
->
data
<
float
>
();
const
float
epsilon
=
param
->
Epsilon
();
PADDLE_MOBILE_ENFORCE
(
out
->
dims
()[
1
]
==
bias
->
dims
()[
0
],
"Output channel should be equal to bias number"
);
int
channel
=
out
->
dims
()[
1
];
auto
new_scale
=
new
Tensor
();
auto
new_bias
=
new
Tensor
();
auto
new_scale_ptr
=
new_scale
->
mutable_data
<
float
>
({
channel
});
auto
new_bias_ptr
=
new_bias
->
mutable_data
<
float
>
({
channel
});
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
new_scale_ptr
[
i
]
=
bn_scale_ptr
[
i
]
/
static_cast
<
float
>
(
pow
((
bn_var_ptr
[
i
]
+
epsilon
),
0.5
));
new_bias_ptr
[
i
]
=
bn_bias_ptr
[
i
]
+
(
0
-
bn_mean_ptr
[
i
])
*
new_scale_ptr
[
i
];
}
int
sub_conv_n
=
param
->
Strides
()[
0
];
auto
bs_ptr
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
channel
*
sub_conv_n
*
// NOLINT
sizeof
(
float
));
// NOLINT
for
(
int
i
=
0
;
i
<
channel
*
sub_conv_n
;
i
++
)
{
bs_ptr
[
i
+
sub_conv_n
*
channel
]
=
new_scale_ptr
[
i
%
channel
];
bs_ptr
[
i
]
=
new_bias_ptr
[
i
%
(
channel
)];
}
PADDLE_MOBILE_ENFORCE
(
param
->
Strides
()[
1
]
==
param
->
Strides
()[
0
],
"stride_width should be equal to stride_height "
);
PADDLE_MOBILE_ENFORCE
(
filter
->
dims
()[
2
]
==
filter
->
dims
()[
3
],
"filter width should be equal to filter height "
);
PADDLE_MOBILE_ENFORCE
(((
filter
->
dims
()[
2
]
%
param
->
Strides
()[
0
])
==
0
),
"filter axis should be the multiple of stride axis "
);
if
(
param
->
Groups
()
==
channel
)
{
fpga
::
format_DWDeconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DWDeconvArgs
DWDeconv_arg
=
{
0
};
fpga
::
fill_DWDeconv_arg
(
&
DWDeconv_arg
,
input
,
out
,
filter
,
activation_enable
,
leaky_relu_negative_slope
,
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
param
->
SetFpgaArgs
(
DWDeconv_arg
);
}
else
{
fpga
::
format_deconv_data
(
filter
,
out
,
&
bs_ptr
,
param
->
Groups
(),
sub_conv_n
);
fpga
::
DeconvArgs
deconv_arg
=
{
0
};
fpga
::
fill_deconv_arg
(
&
deconv_arg
,
input
,
out
,
filter
,
activation_enable
,
leaky_relu_negative_slope
,
param
->
Groups
(),
param
->
Strides
()[
0
],
param
->
Strides
()[
1
],
param
->
Paddings
()[
0
],
param
->
Paddings
()[
1
],
bs_ptr
);
param
->
SetFpgaArgs
(
deconv_arg
);
}
delete
new_scale
;
delete
new_bias
;
return
true
;
}
template
<
>
void
DeconvBNReluKernel
<
FPGA
,
float
>::
Compute
(
const
FusionDeconvBNReluParam
<
FPGA
>
&
param
)
{
// fpga::ComputeFpgaDeconv(param.FpgaArgs());
if
(
param
.
Groups
()
==
param
.
Output
()
->
dims
()[
1
])
{
fpga
::
ComputeDWDeconv
(
param
.
FpgaDWDconvArgs
());
}
else
{
fpga
::
ComputeFpgaDeconv
(
param
.
FpgaArgs
());
}
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/fpga/V1/fetch_kernel.cpp
浏览文件 @
03c0f0a3
...
...
@@ -46,24 +46,39 @@ bool FetchKernel<FPGA, float>::Init(FetchParam<FPGA> *param) {
return
true
;
}
void
dealign
(
float
*
src
,
float
*
dst
,
int
input_c
,
int
input_h
,
int
input_w
)
{
int
alignCW
=
paddle_mobile
::
fpga
::
align_to_x
(
input_c
*
input_w
,
16
);
int
dealignCW
=
input_c
*
input_w
;
for
(
int
h
=
0
;
h
<
input_h
;
++
h
)
{
auto
input_offset
=
h
*
alignCW
;
auto
output_offset
=
h
*
dealignCW
;
memcpy
((
dst
+
output_offset
),
(
src
+
input_offset
),
dealignCW
*
sizeof
(
float
));
}
}
template
<
>
void
FetchKernel
<
FPGA
,
float
>::
Compute
(
const
FetchParam
<
FPGA
>
&
param
)
{
auto
input
=
const_cast
<
Tensor
*>
(
param
.
InputX
()
);
auto
input
=
param
.
InputX
(
);
if
(
input
->
type
()
==
typeid
(
float
))
{
auto
output
=
param
.
Out
();
output
->
ShareDataWith
(
*
input
);
return
;
}
fpga
::
BypassArgs
args
=
param
.
fpga_bypass_args
;
auto
input_address
=
(
input
->
data
<
half
>
());
args
.
image
.
address
=
static_cast
<
void
*>
(
input_address
);
fpga
::
PerformBypass
(
args
);
fpga
::
PerformBypass
(
param
.
fpga_bypass_args
);
auto
outC
=
param
.
Out
()
->
dims
()[
1
];
auto
outH
=
param
.
Out
()
->
dims
()[
2
];
auto
outW
=
param
.
Out
()
->
dims
()[
3
];
fpga
::
fpga_invalidate
(
param
.
fpga_bypass_args
.
output
.
address
,
param
.
fpga_bypass_args
.
image
.
channels
*
sizeof
(
float
));
outH
*
(
paddle_mobile
::
fpga
::
align_to_x
(
outC
*
outW
,
16
))
*
sizeof
(
float
));
// TODO(zhangyang): DEalign: get rid of extra 0
float
*
outdata_ptr
=
reinterpret_cast
<
float
*>
(
param
.
fpga_bypass_args
.
output
.
address
);
float
*
data_tmp
=
reinterpret_cast
<
float
*>
(
malloc
(
outC
*
outH
*
outW
*
sizeof
(
float
)));
dealign
(
outdata_ptr
,
data_tmp
,
outC
,
outH
,
outW
);
memcpy
(
outdata_ptr
,
data_tmp
,
outC
*
outH
*
outW
*
sizeof
(
float
));
}
template
class
FetchKernel
<
FPGA
,
float
>;
...
...
src/operators/op_param.h
浏览文件 @
03c0f0a3
...
...
@@ -2535,6 +2535,62 @@ class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
RType
*
new_scale_
;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template
<
typename
Dtype
>
class
FusionDeconvBNReluParam
:
public
ConvTransposeParam
<
Dtype
>
{
typedef
typename
DtypeTensorTrait
<
Dtype
>::
gtype
GType
;
typedef
typename
DtypeTensorTrait
<
Dtype
>::
rtype
RType
;
public:
FusionDeconvBNReluParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
:
ConvTransposeParam
<
Dtype
>
(
inputs
,
outputs
,
attrs
,
scope
)
{
output_
=
OpParam
::
OutFrom
<
GType
>
(
outputs
,
scope
);
input_bias_
=
OpParam
::
InputBiasFrom
<
GType
>
(
inputs
,
scope
);
input_mean_
=
OpParam
::
InputMeanFrom
<
GType
>
(
inputs
,
scope
);
input_scale_
=
OpParam
::
InputScaleFrom
<
GType
>
(
inputs
,
scope
);
input_variance_
=
OpParam
::
InputVarianceFrom
<
GType
>
(
inputs
,
scope
);
epsilon_
=
OpParam
::
GetAttr
<
float
>
(
"epsilon"
,
attrs
);
momentum_
=
OpParam
::
GetAttr
<
float
>
(
"momentum"
,
attrs
);
}
RType
*
Output
()
const
{
return
output_
;
}
const
RType
*
InputBias
()
const
{
return
input_bias_
;
}
const
RType
*
InputMean
()
const
{
return
input_mean_
;
}
const
RType
*
InputScale
()
const
{
return
input_scale_
;
}
const
RType
*
InputVariance
()
const
{
return
input_variance_
;
}
const
float
&
Epsilon
()
const
{
return
epsilon_
;
}
const
float
&
Momentum
()
const
{
return
momentum_
;
}
const
bool
&
IsTest
()
const
{
return
is_test_
;
}
void
SetNewScale
(
RType
*
new_scale
)
{
new_scale_
=
new_scale
;
}
void
SetNewBias
(
RType
*
new_bias
)
{
new_bias_
=
new_bias
;
}
const
RType
*
NewScale
()
const
{
return
new_scale_
;
}
const
RType
*
NewBias
()
const
{
return
new_bias_
;
}
protected:
RType
*
output_
;
RType
*
input_bias_
;
RType
*
input_mean_
;
RType
*
input_scale_
;
RType
*
input_variance_
;
float
epsilon_
;
float
momentum_
;
bool
is_test_
;
RType
*
new_bias_
;
RType
*
new_scale_
;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template
<
typename
Dtype
>
class
FusionDeconvAddBNReluParam
:
public
ConvTransposeParam
<
Dtype
>
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录