未验证 提交 029971b4 编写于 作者: P Pei Yang 提交者: GitHub

add nearest_interp_cuda kernel, test=develop (#1920)

add nearest_interp cuda kernel for Paddle-Lite
上级 dbabf5c4
...@@ -155,6 +155,7 @@ USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, device_to_host); ...@@ -155,6 +155,7 @@ USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, device_to_host);
USE_LITE_KERNEL(io_copy_once, kCUDA, kAny, kAny, host_to_device); USE_LITE_KERNEL(io_copy_once, kCUDA, kAny, kAny, host_to_device);
USE_LITE_KERNEL(io_copy_once, kCUDA, kAny, kAny, device_to_host); USE_LITE_KERNEL(io_copy_once, kCUDA, kAny, kAny, device_to_host);
USE_LITE_KERNEL(leaky_relu, kCUDA, kFloat, kNCHW, def); USE_LITE_KERNEL(leaky_relu, kCUDA, kFloat, kNCHW, def);
USE_LITE_KERNEL(nearest_interp, kCUDA, kFloat, kNCHW, def);
USE_LITE_KERNEL(yolo_box, kCUDA, kFloat, kNCHW, def); USE_LITE_KERNEL(yolo_box, kCUDA, kFloat, kNCHW, def);
#endif #endif
......
...@@ -7,14 +7,19 @@ message(STATUS "compile with lite CUDA kernels") ...@@ -7,14 +7,19 @@ message(STATUS "compile with lite CUDA kernels")
nv_library(mul_compute_cuda SRCS mul_compute.cc DEPS ${lite_kernel_deps} context) nv_library(mul_compute_cuda SRCS mul_compute.cc DEPS ${lite_kernel_deps} context)
lite_cc_library(io_copy_compute_cuda SRCS io_copy_compute.cc DEPS ${lite_kernel_deps}) lite_cc_library(io_copy_compute_cuda SRCS io_copy_compute.cc DEPS ${lite_kernel_deps})
nv_library(leaky_relu_compute_cuda SRCS leaky_relu_compute.cu DEPS ${lite_kernel_deps}) nv_library(leaky_relu_compute_cuda SRCS leaky_relu_compute.cu DEPS ${lite_kernel_deps})
nv_library(nearest_interp_compute_cuda SRCS nearest_interp_compute.cu DEPS ${lite_kernel_deps})
lite_cc_test(nearest_interp_compute_cuda_test SRCS nearest_interp_compute_test.cc DEPS nearest_interp_compute_cuda)
lite_cc_test(leaky_relu_compute_cuda_test SRCS leaky_relu_compute_test.cc DEPS leaky_relu_compute_cuda) lite_cc_test(leaky_relu_compute_cuda_test SRCS leaky_relu_compute_test.cc DEPS leaky_relu_compute_cuda)
nv_library(yolo_box_compute_cuda SRCS yolo_box_compute.cu DEPS ${lite_kernel_deps}) nv_library(yolo_box_compute_cuda SRCS yolo_box_compute.cu DEPS ${lite_kernel_deps})
lite_cc_test(yolo_box_compute_cuda_test SRCS yolo_box_compute_test.cc DEPS yolo_box_compute_cuda) lite_cc_test(yolo_box_compute_cuda_test SRCS yolo_box_compute_test.cc DEPS yolo_box_compute_cuda)
set(cuda_kernels set(cuda_kernels
mul_compute_cuda mul_compute_cuda
io_copy_compute_cuda io_copy_compute_cuda
leaky_relu_compute_cuda leaky_relu_compute_cuda
nearest_interp_compute_cuda
yolo_box_compute_cuda yolo_box_compute_cuda
) )
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/nearest_interp_compute.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {
using Tensor = lite::Tensor;
__global__ void KeNearestNeighborInterp(const float* in,
const size_t in_img_h,
const size_t in_img_w,
const size_t input_h,
const size_t input_w,
float* out,
const size_t out_img_h,
const size_t out_img_w,
const size_t output_h,
const size_t output_w,
const size_t num_channels,
const float ratio_h,
const float ratio_w,
const bool align_corners) {
int nthreads = output_h * output_w;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (; tid < nthreads; tid += stride) {
int out_id_h = tid / output_w;
int out_id_w = tid % output_w;
int in_img_size = input_w / num_channels;
int out_img_size = output_w / num_channels;
int channel_id = out_id_w / out_img_size;
int out_img_idy = (out_id_w % out_img_size) / out_img_w;
int in_img_idy = (align_corners)
? static_cast<int>(ratio_h * out_img_idy + 0.5)
: static_cast<int>(ratio_h * out_img_idy);
int out_img_idx = tid % out_img_w;
int in_img_idx = (align_corners)
? static_cast<int>(ratio_w * out_img_idx + 0.5)
: static_cast<int>(ratio_w * out_img_idx);
out[tid] = in[out_id_h * input_w + channel_id * in_img_size +
in_img_idy * in_img_w + in_img_idx];
}
}
void NearestInterpCompute::Run() {
auto& param = this->Param<param_t>();
auto& ctx = this->ctx_->template As<CUDAContext>();
auto stream = ctx.exec_stream();
Tensor* input = param.X;
Tensor* output = param.Out;
Tensor* out_size = param.OutSize;
auto* input_data = input->data<float>();
const int n = input->dims()[0];
const int c = input->dims()[1];
const int in_h = input->dims()[2];
const int in_w = input->dims()[3];
int out_h = param.out_h;
int out_w = param.out_w;
float scale = param.scale;
bool align_corners = param.align_corners;
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
if (out_size != nullptr) {
Tensor sizes;
float* size_data = sizes.mutable_data<float>();
float* outsize_data = out_size->mutable_data<float>(TARGET(kCUDA));
cudaMemcpy(
size_data, outsize_data, sizeof(float) * 2, cudaMemcpyDeviceToHost);
out_h = static_cast<int>(size_data[0]);
out_w = static_cast<int>(size_data[1]);
}
auto output_data = output->mutable_data<float>(TARGET(kCUDA));
if (in_h == out_h && in_w == out_w) {
cudaMemcpy(output_data,
input_data,
sizeof(float) * n * c * in_h * in_w,
cudaMemcpyHostToDevice);
return;
}
float ratio_h = 0.f;
float ratio_w = 0.f;
if (out_h > 1) {
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
: static_cast<float>(in_h) / out_h;
}
if (out_w > 1) {
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
: static_cast<float>(in_w) / out_w;
}
int in_hw = in_h * in_w;
int out_hw = out_h * out_w;
int in_chw = c * in_hw;
int out_chw = c * out_hw;
int pixelNum = n * out_chw;
int threads = 512;
int blocks = (pixelNum + threads - 1) / threads;
blocks = blocks > 8 ? 8 : blocks;
KeNearestNeighborInterp<<<blocks, threads, 0, stream>>>(input_data,
in_h,
in_w,
n,
in_chw,
output_data,
out_h,
out_w,
n,
out_chw,
c,
ratio_h,
ratio_w,
align_corners);
cudaError_t error = cudaGetLastError();
if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}
} // namespace cuda
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(nearest_interp,
kCUDA,
kFloat,
kNCHW,
paddle::lite::kernels::cuda::NearestInterpCompute,
def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kCUDA))})
.BindInput("OutSize", {LiteType::GetTensorTy(TARGET(kCUDA))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/core/kernel.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {
class NearestInterpCompute
: public KernelLite<TARGET(kCUDA), PRECISION(kFloat)> {
public:
using param_t = operators::InterpolateParam;
void Run() override;
virtual ~NearestInterpCompute() = default;
};
} // namespace cuda
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/cuda/nearest_interp_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include "lite/fluid/eigen.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {
template <typename T,
size_t D,
int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = lite::fluid::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = lite::Tensor;
static void NearestNeighborInterpolate(const Tensor& input,
Tensor* output,
const float ratio_h,
const float ratio_w,
const int n,
const int c,
const int out_h,
const int out_w,
const bool align_corners) {
auto input_t = EigenTensor<float, 4>::From(input);
auto output_t = EigenTensor<float, 4>::From(*output);
for (int k = 0; k < out_h; k++) { // loop for images
int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
: static_cast<int>(ratio_h * k);
for (int l = 0; l < out_w; l++) {
int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
: static_cast<int>(ratio_w * l);
for (int i = 0; i < n; i++) { // loop for batches
for (int j = 0; j < c; j++) { // loop for channels
output_t(i, j, k, l) = input_t(i, j, in_k, in_l);
}
}
}
}
}
static void NearestInterpRef(operators::InterpolateParam param,
Tensor* input,
const size_t scale,
const size_t n,
const size_t c,
const size_t in_h,
const size_t in_w,
Tensor* output_size,
Tensor* output,
size_t out_h,
size_t out_w) {
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
bool align_corners = param.align_corners;
if (output_size != nullptr) {
auto out_size_data = output_size->mutable_data<float>();
out_h = static_cast<int>(out_size_data[0]);
out_w = static_cast<int>(out_size_data[1]);
}
float* input_data = input->mutable_data<float>();
LOG(INFO) << *(input_data + 2);
float* output_data = output->mutable_data<float>();
LOG(INFO) << *(output_data + 2);
if (in_h == out_h && in_w == out_w) {
std::memcpy(output_data, input_data, sizeof(float) * n * c * in_h * in_w);
LOG(INFO) << *(output_data + 2);
return;
}
float ratio_h = 0.f;
float ratio_w = 0.f;
if (out_h > 1) {
ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
: static_cast<float>(in_h) / out_h;
}
if (out_w > 1) {
ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
: static_cast<float>(in_w) / out_w;
}
NearestNeighborInterpolate(
*input, output, ratio_h, ratio_w, n, c, out_h, out_w, align_corners);
}
TEST(nearest_interp, normal) {
NearestInterpCompute nearest_interp_kernel;
std::unique_ptr<KernelContext> ctx(new KernelContext);
auto& context = ctx->As<CUDAContext>();
operators::InterpolateParam param;
Tensor x, osz, out;
Tensor x_cpu, osz_cpu, out_cpu;
Tensor x_ref, osz_ref, out_ref;
int n = 1, c = 3, in_h = 4, in_w = 4;
int in_chw = c * in_h * in_w;
int out_h = 4, out_w = 4;
float scale = 2.0;
param.out_h = out_h;
param.out_w = out_w;
param.scale = scale;
param.align_corners = false;
x.Resize({n, c, in_h, in_w});
osz.Resize({2});
out.Resize({n, c, out_h, out_w});
x_cpu.Resize({n, c, in_h, in_w});
osz_cpu.Resize({2});
out_cpu.Resize({n, c, out_h, out_w});
x_ref.Resize({n, c, in_h, in_w});
osz_ref.Resize({2});
out_ref.Resize({n, c, out_h, out_w});
auto* x_data = x.mutable_data<float>(TARGET(kCUDA));
auto* osz_data = osz.mutable_data<float>(TARGET(kCUDA));
auto* out_data = out.mutable_data<float>(TARGET(kCUDA));
float* x_cpu_data = x_cpu.mutable_data<float>();
float* osz_cpu_data = osz_cpu.mutable_data<float>();
float* out_cpu_data = out_cpu.mutable_data<float>();
float* x_ref_data = x_ref.mutable_data<float>();
float* osz_ref_data = osz_ref.mutable_data<float>();
float* out_ref_data = out_ref.mutable_data<float>();
for (int i = 0; i < x_cpu.numel(); ++i) {
x_cpu_data[i] = i + 5.0;
x_ref_data[i] = i + 5.0;
}
osz_cpu_data[0] = out_h;
osz_cpu_data[1] = out_w;
osz_ref_data[0] = out_h;
osz_ref_data[1] = out_w;
x.Assign<float, lite::DDim, TARGET(kCUDA)>(x_cpu_data, x_cpu.dims());
osz.Assign<float, lite::DDim, TARGET(kCUDA)>(osz_cpu_data, osz_cpu.dims());
param.X = &x;
param.OutSize = &osz;
param.Out = &out;
nearest_interp_kernel.SetParam(param);
cudaStream_t stream;
cudaStreamCreate(&stream);
context.SetExecStream(stream);
nearest_interp_kernel.SetContext(std::move(ctx));
nearest_interp_kernel.Launch();
cudaDeviceSynchronize();
CopySync<TARGET(kCUDA)>(
out_cpu_data, out_data, sizeof(float) * out.numel(), IoDirection::DtoH);
NearestInterpRef(
param, &x_ref, scale, n, c, in_h, in_w, &osz_ref, &out_ref, out_h, out_w);
for (int i = 0; i < out.numel(); i++) {
EXPECT_NEAR(out_cpu_data[i], out_ref_data[i], 1e-5);
}
}
} // namespace cuda
} // namespace kernels
} // namespace lite
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册