executor.cpp 25.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
Z
zhangyang 已提交
29
#include "memory/t_malloc.h"
L
update  
liuruilong 已提交
30

D
dolphin8 已提交
31
#ifdef PADDLE_EXECUTOR_MULTITHREAD
D
dolphin8 已提交
32 33 34 35
#include <queue>
#include <utility>
#include "common/threadpool.h"
#endif
W
wangliu 已提交
36

L
update  
liuruilong 已提交
37 38 39
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
40 41

namespace paddle_mobile {
42
namespace framework {
43

W
wangliu 已提交
44
using framework::Variable;
L
liuruilong 已提交
45
using framework::Variable;
W
wangliu 已提交
46 47 48 49

#pragma mark - executor

template <typename Dtype, Precision P>
H
hjchen2 已提交
50
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
51
                             const bool use_optimize, const bool loddable)
H
hjchen2 已提交
52 53 54 55
    : program_(p),
      batch_size_(batch_size),
      use_optimize_(use_optimize),
      loddable_(loddable) {
W
wangliu 已提交
56
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
57
  variable_ptr->SetValue<int>(batch_size);
Refine  
陈后江 已提交
58 59
  to_predict_program_ =
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
60 61
  PADDLE_MOBILE_ENFORCE(to_predict_program_ != nullptr,
                        "to_predict_program_ == NULL!");
62
  const std::vector<std::shared_ptr<framework::BlockDesc>> &blocks =
W
wangliu 已提交
63
      to_predict_program_->Blocks();
64 65

  DLOG << "executor in loaddable mode: " << loddable_;
W
wangliu 已提交
66 67 68 69 70
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
71
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
72 73 74
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
Refine  
陈后江 已提交
75 76
      // infer shape to reshape tensor before predict,
      // but for lod tensor, it will need to reshape in runtime
xiebaiyuan's avatar
xiebaiyuan 已提交
77 78 79
      if (!loddable_) {
        op_base->InferShape();
      }
W
wangliu 已提交
80 81 82
      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
W
wangliu 已提交
83
  if (program_.combined) {
L
liuruilong 已提交
84 85 86 87
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
88
  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
89
      to_predict_program_->Block(0);
Z
zhangyang 已提交
90
  int i = 0;
L
liuruilong 已提交
91
  auto &ops = ops_of_block_[*to_predict_block.get()];
L
liuruilong 已提交
92
  for (const auto &op : ops) {
Z
zhangyang 已提交
93
    DLOG << "Initialize op[" << i++ << "]: " << op->Type();
L
liuruilong 已提交
94 95
    op->Init();
  }
W
wangliu 已提交
96 97
}

98
template <typename Dtype>
99 100
static void LoadMemInternal(void **data, framework::LoDTensor *tensor,
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
101
  char **data_buf = reinterpret_cast<char **>(data);
102
  int64_t size = tensor->numel();
103
  Dtype *tensor_data = tensor->mutable_data<Dtype>();
104 105
  if (quant_uint8) {
    // should be moved into operator init function
106 107
    float min_value;
    float max_value;
Z
zhangyang 已提交
108 109
    memory::Copy(&min_value, data_buf, sizeof(float));
    memory::Copy(&max_value, data_buf + sizeof(float), sizeof(float));
110 111
    data_buf += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
112
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(data_buf);
113 114
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
115
    }
116 117
    data_buf += size * sizeof(uint8_t);
  } else {
Z
zhangyang 已提交
118
    memory::Copy(tensor_data, *data_buf, size * sizeof(Dtype));
Refine  
陈后江 已提交
119
    *data_buf += size * sizeof(Dtype);
L
liuruilong 已提交
120
  }
121
}
W
wangliu 已提交
122

123
template <typename Dtype, Precision P>
Refine  
陈后江 已提交
124
void Executor<Dtype, P>::LoadMemory(
125 126 127
    void **data, const std::shared_ptr<framework::VarDesc> var_desc,
    framework::LoDTensor *tensor) {
  char **data_buf = reinterpret_cast<char **>(data);
128
  // version
129
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
130
  *data_buf += sizeof(uint32_t);
131
  // lod information
H
hjchen2 已提交
132 133
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
134
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
135
  *data_buf += sizeof(uint64_t);
136 137 138 139

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
140
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
141
    *data_buf += sizeof(uint64_t);
142
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
143
    memory::Copy(tmp_dim.data(), *data_buf, size);
144
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
145
    *data_buf += size;
W
wangliu 已提交
146
  }
147
  // tensor version
148
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
149
  *data_buf += sizeof(uint32_t);
150
  // tensor desc size
151
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
152
  *data_buf += sizeof(int32_t);
153
  // skip tensor desc
Refine  
陈后江 已提交
154
  *data_buf += tensor_desc_size;
155

Refine  
陈后江 已提交
156
  const framework::TensorDesc &tensor_desc = var_desc->Tensor_desc();
157 158 159
  tensor->Resize(framework::make_ddim(tensor_desc.Dims()));
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
W
wangliu 已提交
160
    case framework::VARTYPE_TYPE_FP32:
161 162
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
163
      break;
164
    case framework::VARTYPE_TYPE_INT8:
165
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
166 167
      break;
    case framework::VARTYPE_TYPE_INT32:
168
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
169 170
      break;
    default:
171
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
172
  }
W
wangliu 已提交
173 174 175 176 177 178 179
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
180
      auto tensor = var->template GetMutable<framework::LoDTensor>();
W
wangliu 已提交
181 182 183 184
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
Refine  
陈后江 已提交
185
        char *origin_data =
Refine  
陈后江 已提交
186
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
187
        char *data = origin_data;
188 189
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
190 191
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
192
          varInputMemory(var_desc, var, tensor);
W
wangliu 已提交
193 194 195 196 197 198
        }
      }
    }
  }
}

L
liuruilong 已提交
199
template <typename Dtype, Precision P>
L
liuruilong 已提交
200
void Executor<Dtype, P>::InitCombineMemory() {
Refine  
陈后江 已提交
201
  char *origin_data = nullptr;
Refine  
陈后江 已提交
202
  bool self_alloc = false;
203
  if (program_.combined_params_buf && program_.combined_params_len) {
204 205
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
206
  } else {
Refine  
陈后江 已提交
207
    self_alloc = true;
Refine  
陈后江 已提交
208
    origin_data = ReadFileToBuff(program_.para_path);
209
  }
Refine  
陈后江 已提交
210 211
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
L
liuruilong 已提交
212 213 214
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
215
      auto tensor = var->template GetMutable<framework::LoDTensor>();
L
liuruilong 已提交
216 217 218 219
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
220
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
221 222
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
223
          varInputMemory(var_desc, var, tensor);
L
liuruilong 已提交
224 225 226 227
        }
      }
    }
  }
Refine  
陈后江 已提交
228
  if (self_alloc) {
229
    delete[] origin_data;
Refine  
陈后江 已提交
230 231
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
232
}
233

xiebaiyuan's avatar
xiebaiyuan 已提交
234 235 236 237
template <typename Dtype, Precision P>
bool Executor<Dtype, P>::varInputMemory(
    const std::shared_ptr<framework::VarDesc> &var_desc, Variable *var,
    framework::LoDTensor *tensor) const {
238 239
  auto type = var_desc->Tensor_desc().DataType();
  switch (type) {
Refine  
陈后江 已提交
240
    case framework::VARTYPE_TYPE_FP32:
241
      tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
242
      break;
Refine  
陈后江 已提交
243
    case framework::VARTYPE_TYPE_INT8:
244
      tensor->mutable_data<int8_t>();
Refine  
陈后江 已提交
245 246
      break;
    case framework::VARTYPE_TYPE_INT32:
247
      tensor->mutable_data<int32_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
248
      break;
Refine  
陈后江 已提交
249
    case framework::VARTYPE_TYPE_INT64:
250
      tensor->mutable_data<int64_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
251
      break;
Refine  
陈后江 已提交
252
    default:
xiebaiyuan's avatar
xiebaiyuan 已提交
253 254
      break;
  }
Refine  
陈后江 已提交
255
  bool is_mute_match = (type == framework::VARTYPE_TYPE_FP32) ||
256 257 258
                       (type == framework::VARTYPE_TYPE_INT8) ||
                       (type == framework::VARTYPE_TYPE_INT32) ||
                       (type == framework::VARTYPE_TYPE_INT64);
Refine  
陈后江 已提交
259
  PADDLE_MOBILE_ENFORCE(is_mute_match, "got unhandled data type : %d", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
260 261
  return is_mute_match;
}
L
liuruilong 已提交
262

W
wangliu 已提交
263
template <typename Dtype, Precision P>
W
wangliu 已提交
264 265
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
266 267 268 269 270 271
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
272
      to_predict_program_->Block(0);
D
dolphin8 已提交
273
  auto &ops = ops_of_block_[*to_predict_block.get()];
xiebaiyuan's avatar
xiebaiyuan 已提交
274

D
dolphin8 已提交
275
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
276
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
277
#endif
D
dolphin8 已提交
278
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
279
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
280 281 282 283
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
284 285 286
    if (loddable_) {
      ops[i]->InferShape();
    }
L
liuruilong 已提交
287
    // to Run
D
dolphin8 已提交
288 289 290 291 292
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
293
  }
W
wangliu 已提交
294 295 296 297 298 299 300
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
  }
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
321 322 323
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
324 325 326
  }
  printf("====================[---------]======================\n");
#endif
L
liuruilong 已提交
327
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
328
}
xiebaiyuan's avatar
xiebaiyuan 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

template <typename Dtype, Precision P>
std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
    const framework::LoDTensor &t) {
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::LoDTensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  feed_tensor->set_lod(t.lod());

  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);

  auto &ops = ops_of_block_[*to_predict_block.get()];

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = 0; i < ops.size(); i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
    if (loddable_) {
      ops[i]->InferShape();
    }
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
  auto last_op = ops.rbegin();

  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
  }
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
  printf("====================[---------]======================\n");
#endif
  return std::make_shared<framework::LoDTensor>(
      framework::LoDTensor(*output_tensor));
}

W
wangliu 已提交
401 402 403 404
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
405 406 407
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
408
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
409 410
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
411
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
L
liuruilong 已提交
412 413
  if (output_tensor != nullptr) {
    Executor<Dtype, P>::Ptype *output_ptr =
L
liuruilong 已提交
414
        output_tensor->data<typename Executor<Dtype, P>::Ptype>();
L
liuruilong 已提交
415 416 417 418 419 420 421 422
    std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
    for (int j = 0; j < output_tensor->numel(); ++j) {
      result_vector.push_back(output_ptr[j]);
    }
    return result_vector;
  } else {
    DLOG << "return  empty vector";
    return {};
W
wangliu 已提交
423
  }
W
wangliu 已提交
424 425
}

426 427
#ifdef PADDLE_MOBILE_FPGA
template <typename Dtype, Precision P>
428
void Executor<Dtype, P>::InjectVariable(const framework::Tensor &t,
H
hjchen2 已提交
429
                                        std::string var_name) {
430
  framework::Variable *g_feed_value = program_.scope->Var(var_name);
431 432 433 434
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
435
}
436

437 438 439
template <typename Dtype, Precision P>
void Executor<Dtype, P>::FeedData(const framework::Tensor &t) {
  InjectVariable(t, "feed");
440
}
441

442
template <typename Dtype, Precision P>
443
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::FetchResult(int id) {
444 445 446
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
447

Z
zhangyang 已提交
448 449 450 451 452
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
453 454 455
  auto *output_tensor = framework::GetVarValue<framework::LoDTensor>(
      out_keys[0], output_map, *(program_.scope));
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
456
}
457 458 459 460 461 462

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From_To(int start, int end) {
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
463
  end = end < 0 ? static_cast<int>(ops.size()) : end;
464 465 466 467 468 469 470 471 472 473 474 475
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
476
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
477 478 479 480 481 482 483
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
484
}
485 486 487 488

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From(int start) {
  Predict_From_To(start);
489
}
490 491 492 493

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_To(int end) {
  Predict_From_To(0, end);
494
}
495 496
#endif

Y
yangfei 已提交
497
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
498 499 500 501
template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
                                    float *tensorInput, char **data) {}

Y
yangfei 已提交
502
template <>
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
void Executor<GPU_CL, Precision::FP32>::LoadMemory(
    const framework::VarDesc var_desc, float *tensorInput, char **data) {
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  //            int type_size = 0;
  //            switch (desc.DataType()) {
  //                case framework::VARTYPE_TYPE_FP16:
  //                    type_size = 2;
  //                    break;
  //                case framework::VARTYPE_TYPE_FP32:
  //                    type_size = 4;
  //                    memory = tensor->mutable_data<float>();
  //                    break;
  //                case framework::VARTYPE_TYPE_FP64:
  //                    type_size = 8;
  //                    break;
  //                case framework::VARTYPE_TYPE_INT32:
  //                    memory = tensor->mutable_data<int32_t>();
  //                    type_size = 4;
  //                    break;
  //                case framework::VARTYPE_TYPE_INT64:
  //                    type_size = 8;
  //                    break;
  //                case framework::VARTYPE_TYPE_BOOL:
  //                    type_size = 1;
  //                    break;
  //                default:
  //                    break;
  //            }
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
602

Y
yangfei 已提交
603 604 605 606 607 608
template <>
void Executor<GPU_CL, Precision::FP32>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
609
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
610
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
Z
zhaojiaying01 已提交
611
          var->template GetMutable<framework::LoDTensor>();
Y
yangfei 已提交
612
          continue;
L
liuruilong 已提交
613 614
        } else {
          cl_image = var->template GetMutable<framework::CLImage>();
Y
yangfei 已提交
615
        }
L
liuruilong 已提交
616

Y
yangfei 已提交
617
        char *origin_data =
L
liuruilong 已提交
618
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
619
        char *data = origin_data;
Y
yangfei 已提交
620
        cl_context context = program_.scope->GetCLScpoe()->Context();
621 622 623 624 625 626
        const framework::TensorDesc &desc = var_desc->Tensor_desc();
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
627
        float *tensorInput = static_cast<float *>(
628 629
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
630 631

        framework::DDim ddim = framework::make_ddim(desc.Dims());
Y
yangfei 已提交
632

L
liuruilong 已提交
633 634
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
635

636
        delete origin_data;
Y
yangfei 已提交
637
        paddle_mobile::memory::Free(tensorInput);
638 639 640 641
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<framework::CLImage>();
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
642 643
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
644

645
          const framework::TensorDesc &desc = var_desc->Tensor_desc();
Y
yangfei 已提交
646 647
          //          framework::DDim ddim = framework::make_ddim(desc.Dims());
          framework::DDim ddim = cl_image->dims();
648
          DLOG << var_desc->Name();
L
liuruilong 已提交
649
          cl_image->InitEmptyImage(context, command_queue, ddim);
650
        }
Y
yangfei 已提交
651 652 653 654
      }
    }
  }
}
655

Y
yangfei 已提交
656 657
template <>
void Executor<GPU_CL, Precision::FP32>::InitCombineMemory() {
Y
yangfei 已提交
658 659
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
660 661
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
662
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
663 664
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
665
    self_alloc = true;
L
liuruilong 已提交
666
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
667 668
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
669
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
670 671 672 673 674

  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
675
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
676
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
Z
zhaojiaying01 已提交
677
          var->template GetMutable<framework::LoDTensor>();
Y
yangfei 已提交
678
          continue;
L
liuruilong 已提交
679 680
        } else {
          cl_image = var->template GetMutable<framework::CLImage>();
Y
yangfei 已提交
681 682 683 684
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

Y
yangfei 已提交
685
        const framework::TensorDesc &desc = var_desc->Tensor_desc();
Y
yangfei 已提交
686
        framework::DDim ddim = framework::make_ddim(desc.Dims());
Y
yangfei 已提交
687 688 689 690 691

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
692 693 694
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
695 696 697 698

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

699 700
        paddle_mobile::memory::Free(tensorInput);
      } else {
Y
yangfei 已提交
701 702
        auto cl_image = var->template GetMutable<framework::CLImage>();
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
703 704
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
705
        const framework::TensorDesc &desc = var_desc->Tensor_desc();
Y
yangfei 已提交
706 707
        framework::DDim ddim = cl_image->dims();
        //        framework::DDim ddim = framework::make_ddim(desc.Dims());
L
liuruilong 已提交
708
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
709 710 711
      }
    }
  }
Y
yangfei 已提交
712
  if (self_alloc) {
713
    delete data;
Y
yangfei 已提交
714
  }
Y
yangfei 已提交
715
  LOG(kLOG_INFO) << " end init combine memory ";
716
}
Y
yangfei 已提交
717 718 719

#endif

W
wangliu 已提交
720
template class Executor<CPU, Precision::FP32>;
Y
yangfei 已提交
721

L
liuruilong 已提交
722
template class Executor<FPGA, Precision::FP32>;
W
wangliu 已提交
723

Y
yangfei 已提交
724 725 726 727 728
template class Executor<GPU_CL, Precision::FP32>;

template class Executor<GPU_MALI, Precision::FP32>;

}  // namespace framework
W
wangliu 已提交
729
}  // namespace paddle_mobile