api_paddle_mobile.cc 5.0 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "io/api_paddle_mobile.h"
#include <vector>
#include "framework/tensor.h"

namespace paddle_mobile {

template <typename Dtype, Precision P>
PaddleMobilePredictor<Dtype, P>::PaddleMobilePredictor(
    const PaddleMobileConfig &config) {
  PADDLE_MOBILE_ENFORCE(Init(config) == true,
                        "paddle mobile predictor init failed!");
  config_ = config;
}

template <typename Dtype, Precision P>
bool PaddleMobilePredictor<Dtype, P>::Init(const PaddleMobileConfig &config) {
  paddle_mobile_.reset(new PaddleMobile<Dtype, P>());
Y
yangfei 已提交
32 33 34
#ifdef PADDLE_MOBILE_CL
  paddle_mobile_->SetCLPath(config.cl_path);
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
35 36 37 38 39 40 41
  if (config.memory_pack.from_memory) {
    DLOG << "load from memory!";
    paddle_mobile_->LoadCombinedMemory(config.memory_pack.model_size,
                                       config.memory_pack.model_buf,
                                       config.memory_pack.combined_params_size,
                                       config.memory_pack.combined_params_buf);
  } else if (!config.model_dir.empty()) {
N
nhzlx 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    paddle_mobile_->Load(config.model_dir, config.optimize,
                         config.quantification, config.batch_size);
  } else if (!config.prog_file.empty() && !config.param_file.empty()) {
    paddle_mobile_->Load(config.prog_file, config.param_file, config.optimize,
                         config.quantification, config.batch_size);
  } else {
    LOG(kLOG_ERROR) << "fail to load inference model!";
    return false;
  }
  // If the openmp is open, set the thread num
  paddle_mobile_->SetThreadNum(config.thread_num);
  return true;
}
template <typename Dtype, Precision P>
bool PaddleMobilePredictor<Dtype, P>::Run(
    const std::vector<PaddleTensor> &inputs,
    std::vector<PaddleTensor> *output_data, int batch_size) {
  if (inputs.empty()) {
    LOG(kLOG_ERROR) << "At least one output should be set with tensors' names.";
    return false;
  }
  auto input = inputs[0];

  if (input.shape.size() != 4) {
    LOG(kLOG_ERROR) << "input shape not equal to 4!";
    return false;
  }
  std::vector<int64_t> dims;
  for (auto d : input.shape) {
    dims.push_back(static_cast<int64_t>(d));
  }

  // use tensor
  framework::DDim ddim =
      framework::make_ddim({dims[0], dims[1], dims[2], dims[3]});

  framework::Tensor input_tensor;
  input_tensor.Resize(ddim);
  int input_length = framework::product(ddim);
N
nhzlx 已提交
81 82
  typedef typename PrecisionTrait<P>::ptype PType;
  auto input_ptr = input_tensor.mutable_data<PType>();
N
nhzlx 已提交
83

N
nhzlx 已提交
84 85
  memcpy(input_ptr, static_cast<PType *>(input.data.data()),
         input_length * sizeof(PType));
N
nhzlx 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  auto output_tensor = paddle_mobile_->Predict(input_tensor);

  if (output_data->empty()) {
    LOG(kLOG_ERROR) << "At least one output should be set with tensors' names.";
    return false;
  }

  auto &output = (*output_data)[0];
  int output_length = output_tensor->numel();
  std::vector<int64_t> tensor_shape =
      framework::vectorize(output_tensor->dims());

  for (auto d : tensor_shape) {
    output.shape.push_back(static_cast<int>(d));
  }

N
nhzlx 已提交
102 103
  if (output.data.length() < output_length * sizeof(PType)) {
    output.data.Resize(output_length * sizeof(PType));
N
nhzlx 已提交
104 105
  }

N
nhzlx 已提交
106 107
  memcpy(output.data.data(), output_tensor->template data<PType>(),
         output_length * sizeof(PType));
N
nhzlx 已提交
108 109 110 111

  return true;
}

L
liuruilong 已提交
112 113 114 115 116
template <typename Dtype, Precision P>
PaddleMobilePredictor<Dtype, P>::~PaddleMobilePredictor() {
  paddle_mobile_->Clear();
}

N
nhzlx 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129
// A factory to help create difference predictor.
template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<PaddleMobileConfig, PaddleEngineKind::kPaddleMobile>(
    const PaddleMobileConfig &config) {
  std::unique_ptr<PaddlePredictor> x;
  if (config.precision == PaddleMobileConfig::FP32) {
    if (config.device == PaddleMobileConfig::kCPU) {
      x.reset(new PaddleMobilePredictor<CPU, Precision::FP32>(config));
    } else if (config.device == PaddleMobileConfig::kFPGA) {
      x.reset(new PaddleMobilePredictor<FPGA, Precision::FP32>(config));
    } else if (config.device == PaddleMobileConfig::kGPU_MALI) {
      x.reset(new PaddleMobilePredictor<GPU_MALI, Precision::FP32>(config));
L
liuruilong 已提交
130 131
    } else if (config.device == PaddleMobileConfig::kGPU_CL) {
      x.reset(new PaddleMobilePredictor<GPU_CL, Precision::FP32>(config));
N
nhzlx 已提交
132 133 134 135 136 137 138 139 140 141 142 143
    } else {
      LOG(kLOG_ERROR) << "unsupport device type!";
      return nullptr;
    }
  } else {
    LOG(kLOG_ERROR) << "unsupport precision type!";
    return nullptr;
  }
  return std::move(x);
}

}  // namespace paddle_mobile