api_paddle_mobile.cc 4.3 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "io/api_paddle_mobile.h"
#include <vector>
#include "framework/tensor.h"

namespace paddle_mobile {

template <typename Dtype, Precision P>
PaddleMobilePredictor<Dtype, P>::PaddleMobilePredictor(
    const PaddleMobileConfig &config) {
  PADDLE_MOBILE_ENFORCE(Init(config) == true,
                        "paddle mobile predictor init failed!");
  config_ = config;
}

template <typename Dtype, Precision P>
bool PaddleMobilePredictor<Dtype, P>::Init(const PaddleMobileConfig &config) {
  paddle_mobile_.reset(new PaddleMobile<Dtype, P>());
  if (!config.model_dir.empty()) {
    paddle_mobile_->Load(config.model_dir, config.optimize,
                         config.quantification, config.batch_size);
  } else if (!config.prog_file.empty() && !config.param_file.empty()) {
    paddle_mobile_->Load(config.prog_file, config.param_file, config.optimize,
                         config.quantification, config.batch_size);
  } else {
    LOG(kLOG_ERROR) << "fail to load inference model!";
    return false;
  }
  // If the openmp is open, set the thread num
  paddle_mobile_->SetThreadNum(config.thread_num);
  return true;
}

template <typename Dtype, Precision P>
bool PaddleMobilePredictor<Dtype, P>::Run(
    const std::vector<PaddleTensor> &inputs,
    std::vector<PaddleTensor> *output_data, int batch_size) {
  if (inputs.empty()) {
    LOG(kLOG_ERROR) << "At least one output should be set with tensors' names.";
    return false;
  }
  auto input = inputs[0];

  if (input.shape.size() != 4) {
    LOG(kLOG_ERROR) << "input shape not equal to 4!";
    return false;
  }
  std::vector<int64_t> dims;
  for (auto d : input.shape) {
    dims.push_back(static_cast<int64_t>(d));
  }

  // use tensor
  framework::DDim ddim =
      framework::make_ddim({dims[0], dims[1], dims[2], dims[3]});

  framework::Tensor input_tensor;
  input_tensor.Resize(ddim);
  int input_length = framework::product(ddim);
N
nhzlx 已提交
73 74
  typedef typename PrecisionTrait<P>::ptype PType;
  auto input_ptr = input_tensor.mutable_data<PType>();
N
nhzlx 已提交
75

N
nhzlx 已提交
76 77
  memcpy(input_ptr, static_cast<PType *>(input.data.data()),
         input_length * sizeof(PType));
N
nhzlx 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  auto output_tensor = paddle_mobile_->Predict(input_tensor);

  if (output_data->empty()) {
    LOG(kLOG_ERROR) << "At least one output should be set with tensors' names.";
    return false;
  }

  auto &output = (*output_data)[0];
  int output_length = output_tensor->numel();
  std::vector<int64_t> tensor_shape =
      framework::vectorize(output_tensor->dims());

  for (auto d : tensor_shape) {
    output.shape.push_back(static_cast<int>(d));
  }

N
nhzlx 已提交
94 95
  if (output.data.length() < output_length * sizeof(PType)) {
    output.data.Resize(output_length * sizeof(PType));
N
nhzlx 已提交
96 97
  }

N
nhzlx 已提交
98 99
  memcpy(output.data.data(), output_tensor->template data<PType>(),
         output_length * sizeof(PType));
N
nhzlx 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

  return true;
}

// A factory to help create difference predictor.
template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<PaddleMobileConfig, PaddleEngineKind::kPaddleMobile>(
    const PaddleMobileConfig &config) {
  std::unique_ptr<PaddlePredictor> x;
  if (config.precision == PaddleMobileConfig::FP32) {
    if (config.device == PaddleMobileConfig::kCPU) {
      x.reset(new PaddleMobilePredictor<CPU, Precision::FP32>(config));
    } else if (config.device == PaddleMobileConfig::kFPGA) {
      x.reset(new PaddleMobilePredictor<FPGA, Precision::FP32>(config));
    } else if (config.device == PaddleMobileConfig::kGPU_MALI) {
      x.reset(new PaddleMobilePredictor<GPU_MALI, Precision::FP32>(config));
    } else {
      LOG(kLOG_ERROR) << "unsupport device type!";
      return nullptr;
    }
  } else {
    LOG(kLOG_ERROR) << "unsupport precision type!";
    return nullptr;
  }
  return std::move(x);
}

}  // namespace paddle_mobile