test_rfcn_api.cpp 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
18
#include <fstream>
Z
zhangyang0701 已提交
19
#include <iostream>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "../../src/io/paddle_inference_api.h"

using namespace paddle_mobile;
using namespace paddle_mobile::fpga;

static const char *g_image = "../models/rfcn/data.bin";
static const char *g_model = "../models/rfcn/model";
static const char *g_param = "../models/rfcn/params";

void readStream(std::string filename, char *buf) {
  std::ifstream in;
  in.open(filename, std::ios::in | std::ios::binary);
  if (!in.is_open()) {
    std::cout << "open File Failed." << std::endl;
    return;
  }

  in.seekg(0, std::ios::end);  // go to the end
  auto length = in.tellg();    // report location (this is the length)
  in.seekg(0, std::ios::beg);  // go back to the beginning
  in.read(buf, length);
  in.close();
}

PaddleMobileConfig GetConfig() {
Z
zhangyang0701 已提交
45 46 47 48 49 50 51 52 53 54 55
  PaddleMobileConfig config;
  config.precision = PaddleMobileConfig::FP32;
  config.device = PaddleMobileConfig::kFPGA;
  config.prog_file = g_model;
  config.param_file = g_param;
  config.thread_num = 1;
  config.batch_size = 1;
  config.optimize = true;
  config.lod_mode = true;
  config.quantification = false;
  return config;
56 57 58
}

int main() {
Z
zhangyang0701 已提交
59 60 61 62 63 64
  open_device();
  PaddleMobileConfig config = GetConfig();
  auto predictor =
      CreatePaddlePredictor<PaddleMobileConfig,
                            PaddleEngineKind::kPaddleMobile>(config);

65
  std::cout << "Finishing loading model" << std::endl;
Z
zhangyang0701 已提交
66 67 68 69 70 71

  float img_info[3] = {768, 1536, 768.0f / 960.0f};
  int img_length = 768 * 1536 * 3;
  auto img = reinterpret_cast<float *>(fpga_malloc(img_length * sizeof(float)));
  readStream(g_image, reinterpret_cast<char *>(img));

72
  std::cout << "Finishing initializing data" << std::endl;
Z
zhangyang0701 已提交
73 74 75 76 77 78 79 80 81 82 83
  /*
    predictor->FeedData({img_info, img});
    predictor->Predict_From_To(0, -1);
    std::cout << " Finishing predicting " << std::endl;
      std::vector<void *> v(3, nullptr);
      predictor->GetResults(&v);
    int post_nms = 300;
    for (int num = 0; num < post_nms; num ++){
      for (int i = 0; i < 8; i ++){
        std:: cout << ((float*)(v[0]))[num * 8 + i] << std::endl;
      }
84
    }
Z
zhangyang0701 已提交
85 86 87 88
    for (int num = 0; num < post_nms; num ++){
      for (int i = 0; i < 8; i ++){
        std:: cout << ((float*)(v[1]))[num * 8 + i] << std::endl;
      }
89
    }
Z
zhangyang0701 已提交
90 91 92 93
    for (int num = 0; num < post_nms; num ++){
      for (int i = 0; i < 4; i ++){
        std:: cout << ((float*)(v[2]))[num * 4 + i] << std::endl;
      }
94
    }
Z
zhangyang0701 已提交
95
  */
96 97 98 99

  struct PaddleTensor t_img_info, t_img;
  t_img_info.dtype = FLOAT32;
  t_img_info.layout = LAYOUT_HWC;
Z
zhangyang0701 已提交
100
  t_img_info.shape = std::vector<int>({1, 3});
101 102 103 104 105
  t_img_info.name = "Image information";
  t_img_info.data.Reset(img_info, 3 * sizeof(float));

  t_img.dtype = FLOAT32;
  t_img.layout = LAYOUT_HWC;
Z
zhangyang0701 已提交
106
  t_img.shape = std::vector<int>({1, 768, 1536, 3});
107 108 109 110 111 112 113 114 115
  t_img.name = "Image information";
  t_img.data.Reset(img, img_length * sizeof(float));
  predictor->FeedPaddleTensors({t_img_info, t_img});

  std::cout << "Finishing feeding data " << std::endl;

  predictor->Predict_From_To(0, -1);
  std::cout << "Finishing predicting " << std::endl;

116 117 118 119
  std::vector<PaddleTensor> v;        // No need to initialize v
  predictor->FetchPaddleTensors(&v);  // Old data in v will be cleared
  std::cout << "Output number is " << v.size() << std::endl;

Z
zhangyang0701 已提交
120 121 122 123 124
  auto post_nms = v[0].data.length() / sizeof(float) / 8;
  for (int num = 0; num < post_nms; num++) {
    for (int i = 0; i < 8; i++) {
      auto p = reinterpret_cast<float *>(v[0].data.data());
      std::cout << p[num * 8 + i] << std::endl;
125 126
    }
  }
Z
zhangyang0701 已提交
127 128 129 130
  for (int num = 0; num < post_nms; num++) {
    for (int i = 0; i < 8; i++) {
      auto p = reinterpret_cast<float *>(v[1].data.data());
      std::cout << p[num * 8 + i] << std::endl;
131 132
    }
  }
Z
zhangyang0701 已提交
133 134 135 136
  for (int num = 0; num < post_nms; num++) {
    for (int i = 0; i < 4; i++) {
      auto p = reinterpret_cast<float *>(v[2].data.data());
      std::cout << p[num * 4 + i] << std::endl;
137 138
    }
  }
139 140 141 142 143 144 145 146 147
  std::cout << "Finish getting vector values" << std::endl;

  PaddleTensor tensor;
  predictor->GetPaddleTensor("fetch2", &tensor);
  for (int i = 0; i < post_nms; i++) {
    auto p = reinterpret_cast<float *>(tensor.data.data());
    std::cout << p[+i] << std::endl;
  }

Z
zhangyang0701 已提交
148
  return 0;
149
}