test_rfcn_api.cpp 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>
Z
zhangyang0701 已提交
16
#include <iostream>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include "../../src/io/paddle_inference_api.h"

using namespace paddle_mobile;
using namespace paddle_mobile::fpga;

static const char *g_image = "../models/rfcn/data.bin";
static const char *g_model = "../models/rfcn/model";
static const char *g_param = "../models/rfcn/params";

void readStream(std::string filename, char *buf) {
  std::ifstream in;
  in.open(filename, std::ios::in | std::ios::binary);
  if (!in.is_open()) {
    std::cout << "open File Failed." << std::endl;
    return;
  }

  in.seekg(0, std::ios::end);  // go to the end
  auto length = in.tellg();    // report location (this is the length)
  in.seekg(0, std::ios::beg);  // go back to the beginning
  in.read(buf, length);
  in.close();
}

PaddleMobileConfig GetConfig() {
Z
zhangyang0701 已提交
42 43 44 45 46 47 48 49 50 51 52
  PaddleMobileConfig config;
  config.precision = PaddleMobileConfig::FP32;
  config.device = PaddleMobileConfig::kFPGA;
  config.prog_file = g_model;
  config.param_file = g_param;
  config.thread_num = 1;
  config.batch_size = 1;
  config.optimize = true;
  config.lod_mode = true;
  config.quantification = false;
  return config;
53 54 55
}

int main() {
Z
zhangyang0701 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  open_device();
  PaddleMobileConfig config = GetConfig();
  auto predictor =
      CreatePaddlePredictor<PaddleMobileConfig,
                            PaddleEngineKind::kPaddleMobile>(config);

  std::cout << "after loading model" << std::endl;

  float img_info[3] = {768, 1536, 768.0f / 960.0f};
  int img_length = 768 * 1536 * 3;
  auto img = reinterpret_cast<float *>(fpga_malloc(img_length * sizeof(float)));
  readStream(g_image, reinterpret_cast<char *>(img));

  std::cout << "after initializing data" << std::endl;
  /*
    predictor->FeedData({img_info, img});
    predictor->Predict_From_To(0, -1);
    std::cout << " Finishing predicting " << std::endl;
      std::vector<void *> v(3, nullptr);
      predictor->GetResults(&v);
    int post_nms = 300;
    for (int num = 0; num < post_nms; num ++){
      for (int i = 0; i < 8; i ++){
        std:: cout << ((float*)(v[0]))[num * 8 + i] << std::endl;
      }
81
    }
Z
zhangyang0701 已提交
82 83 84 85
    for (int num = 0; num < post_nms; num ++){
      for (int i = 0; i < 8; i ++){
        std:: cout << ((float*)(v[1]))[num * 8 + i] << std::endl;
      }
86
    }
Z
zhangyang0701 已提交
87 88 89 90
    for (int num = 0; num < post_nms; num ++){
      for (int i = 0; i < 4; i ++){
        std:: cout << ((float*)(v[2]))[num * 4 + i] << std::endl;
      }
91
    }
Z
zhangyang0701 已提交
92
  */
93 94 95 96

  struct PaddleTensor t_img_info, t_img;
  t_img_info.dtype = FLOAT32;
  t_img_info.layout = LAYOUT_HWC;
Z
zhangyang0701 已提交
97
  t_img_info.shape = std::vector<int>({1, 3});
98 99 100 101 102
  t_img_info.name = "Image information";
  t_img_info.data.Reset(img_info, 3 * sizeof(float));

  t_img.dtype = FLOAT32;
  t_img.layout = LAYOUT_HWC;
Z
zhangyang0701 已提交
103
  t_img.shape = std::vector<int>({1, 768, 1536, 3});
104 105 106 107 108 109 110 111 112 113 114
  t_img.name = "Image information";
  t_img.data.Reset(img, img_length * sizeof(float));
  predictor->FeedPaddleTensors({t_img_info, t_img});

  std::cout << "Finishing feeding data " << std::endl;

  predictor->Predict_From_To(0, -1);
  std::cout << "Finishing predicting " << std::endl;

  std::vector<PaddleTensor> v(3, PaddleTensor());
  predictor->FetchPaddleTensors(&v);
Z
zhangyang0701 已提交
115 116 117 118 119
  auto post_nms = v[0].data.length() / sizeof(float) / 8;
  for (int num = 0; num < post_nms; num++) {
    for (int i = 0; i < 8; i++) {
      auto p = reinterpret_cast<float *>(v[0].data.data());
      std::cout << p[num * 8 + i] << std::endl;
120 121
    }
  }
Z
zhangyang0701 已提交
122 123 124 125
  for (int num = 0; num < post_nms; num++) {
    for (int i = 0; i < 8; i++) {
      auto p = reinterpret_cast<float *>(v[1].data.data());
      std::cout << p[num * 8 + i] << std::endl;
126 127
    }
  }
Z
zhangyang0701 已提交
128 129 130 131
  for (int num = 0; num < post_nms; num++) {
    for (int i = 0; i < 4; i++) {
      auto p = reinterpret_cast<float *>(v[2].data.data());
      std::cout << p[num * 4 + i] << std::endl;
132 133
    }
  }
Z
zhangyang0701 已提交
134
  return 0;
135
}