paddle_mobile_jni.cpp 14.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef ANDROID

#include "paddle_mobile_jni.h"
D
dolphin8 已提交
18
#include <cmath>
19 20
#include <string>
#include <vector>
21 22 23 24
#include "common/log.h"
#include "framework/tensor.h"
#include "io/paddle_mobile.h"

25 26 27 28
#ifdef ENABLE_EXCEPTION
#include "common/enforce.h"
#endif

W
wangliu 已提交
29 30 31
#ifdef __cplusplus
extern "C" {
#endif
32

W
wangliu 已提交
33 34
namespace paddle_mobile {
namespace jni {
35

W
wangliu 已提交
36 37 38 39 40 41
using framework::DDim;
using framework::Program;
using framework::Tensor;
using paddle_mobile::CPU;
using std::string;

42
const char *ANDROID_LOG_TAG =
W
wangliu 已提交
43
    "paddle_mobile LOG built on " __DATE__ " " __TIME__;
44 45
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
static std::mutex shared_mutex;
W
wangliu 已提交
46

47
PaddleMobile<CPU> *getPaddleMobileInstance() { return &paddle_mobile; }
W
wangliu 已提交
48 49 50 51 52 53 54 55

string jstring2cppstring(JNIEnv *env, jstring jstr) {
  const char *cstr = env->GetStringUTFChars(jstr, 0);
  string cppstr(cstr);
  env->ReleaseStringUTFChars(jstr, cstr);
  return cppstr;
}

H
hjchen2 已提交
56 57 58 59
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(JNIEnv *env,
                                                          jclass thiz,
                                                          jstring modelPath,
                                                          jboolean lodMode) {
60
  std::lock_guard<std::mutex> lock(shared_mutex);
61
  ANDROIDLOGI("load invoked");
W
wangliu 已提交
62
  bool optimize = true;
63 64 65 66
  bool isLoadOk = false;
#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
67
        jstring2cppstring(env, modelPath), optimize, false, 1,
H
hjchen2 已提交
68
        static_cast<bool>(lodMode));
69 70 71 72 73 74
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
  isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
75
                                             optimize, false, 1,
H
hjchen2 已提交
76
                                             static_cast<bool>(lodMode));
xiebaiyuan's avatar
xiebaiyuan 已提交
77 78 79 80
#endif
  return static_cast<jboolean>(isLoadOk);
}

81
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadQualified(
H
hjchen2 已提交
82
    JNIEnv *env, jclass thiz, jstring modelPath, jboolean lodMode) {
83 84
  std::lock_guard<std::mutex> lock(shared_mutex);

85 86 87
  ANDROIDLOGI("loadQualified invoked");
  bool optimize = true;
  bool qualified = true;
88 89 90 91 92 93 94 95 96 97 98 99
  bool isLoadOk = false;

#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
        jstring2cppstring(env, modelPath), optimize, qualified);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
  isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
H
hjchen2 已提交
100 101
                                             optimize, qualified, 1,
                                             static_cast<bool>(lodMode));
102 103 104
#endif

  return static_cast<jboolean>(isLoadOk);
105 106
}

107
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombined(
H
hjchen2 已提交
108 109
    JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath,
    jboolean lodMode) {
110
  std::lock_guard<std::mutex> lock(shared_mutex);
111
  ANDROIDLOGI("loadCombined invoked");
112
  bool optimize = true;
113 114 115 116 117 118 119 120 121 122 123 124
  bool isLoadOk = false;

#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
        jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
        optimize);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
H
hjchen2 已提交
125 126 127
  isLoadOk = getPaddleMobileInstance()->Load(
      jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
      optimize, false, 1, static_cast<bool>(lodMode));
128 129
#endif
  return static_cast<jboolean>(isLoadOk);
130 131
}

132
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombinedQualified(
H
hjchen2 已提交
133 134
    JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath,
    jboolean lodMode) {
135
  std::lock_guard<std::mutex> lock(shared_mutex);
136 137 138
  ANDROIDLOGI("loadCombinedQualified invoked");
  bool optimize = true;
  bool qualified = true;
139 140 141 142 143 144 145 146 147 148 149 150
  bool isLoadOk = false;

#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
        jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
        optimize, qualified);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
H
hjchen2 已提交
151 152 153
  isLoadOk = getPaddleMobileInstance()->Load(
      jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
      optimize, qualified, 1, static_cast<bool>(lodMode));
154 155
#endif
  return static_cast<jboolean>(isLoadOk);
156 157
}

W
wangliu 已提交
158 159
JNIEXPORT jfloatArray JNICALL Java_com_baidu_paddle_PML_predictImage(
    JNIEnv *env, jclass thiz, jfloatArray buf, jintArray ddims) {
160 161
  std::lock_guard<std::mutex> lock(shared_mutex);

162
  ANDROIDLOGI("predictImage invoked");
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  jfloatArray result = NULL;

#ifdef ENABLE_EXCEPTION
  ANDROIDLOGE("ENABLE_EXCEPTION!");

  try {
    jsize ddim_size = env->GetArrayLength(ddims);
    if (ddim_size != 4) {
      ANDROIDLOGE("ddims size not equal to 4");
    }
    jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
    framework::DDim ddim = framework::make_ddim(
        {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
    int length = framework::product(ddim);
    int count = 0;
    float *dataPointer = nullptr;
    if (nullptr != buf) {
      dataPointer = env->GetFloatArrayElements(buf, NULL);
    }
    framework::Tensor input;
    input.Resize(ddim);
    auto input_ptr = input.mutable_data<float>();
    for (int i = 0; i < length; i++) {
      input_ptr[i] = dataPointer[i];
    }
188 189
    getPaddleMobileInstance()->Predict(input);
    auto output = getPaddleMobileInstance()->Fetch();
190 191 192 193 194 195 196 197 198 199 200 201 202
    count = output->numel();
    result = env->NewFloatArray(count);
    env->SetFloatArrayRegion(result, 0, count, output->data<float>());
    env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
    env->DeleteLocalRef(ddims);
    env->ReleaseFloatArrayElements(buf, dataPointer, 0);
    env->DeleteLocalRef(buf);

  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }

#else
203
  jsize ddim_size = env->GetArrayLength(ddims);
W
wangliu 已提交
204 205
  if (ddim_size != 4) {
    ANDROIDLOGE("ddims size not equal to 4");
206 207
  }
  jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
W
wangliu 已提交
208 209
  framework::DDim ddim = framework::make_ddim(
      {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
210
  int length = framework::product(ddim);
W
wangliu 已提交
211 212 213 214 215 216 217 218
  int count = 0;
  float *dataPointer = nullptr;
  if (nullptr != buf) {
    dataPointer = env->GetFloatArrayElements(buf, NULL);
  }
  framework::Tensor input;
  input.Resize(ddim);
  auto input_ptr = input.mutable_data<float>();
219
  for (int i = 0; i < length; i++) {
W
wangliu 已提交
220 221
    input_ptr[i] = dataPointer[i];
  }
222 223
  getPaddleMobileInstance()->Predict(input);
  auto output = getPaddleMobileInstance()->Fetch();
W
wangliu 已提交
224 225 226
  count = output->numel();
  result = env->NewFloatArray(count);
  env->SetFloatArrayRegion(result, 0, count, output->data<float>());
W
wangliu 已提交
227
  env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
228 229 230
  env->DeleteLocalRef(ddims);
  env->ReleaseFloatArrayElements(buf, dataPointer, 0);
  env->DeleteLocalRef(buf);
Z
zhaojiaying01 已提交
231
//  env->DeleteLocalRef(dataPointer);
232 233
#endif

234
  ANDROIDLOGI("predictImage finished");
235

W
wangliu 已提交
236 237 238
  return result;
}

W
wangliu 已提交
239 240 241 242
inline int yuv_to_rgb(int y, int u, int v, float *r, float *g, float *b) {
  int r1 = (int)(y + 1.370705 * (v - 128));
  int g1 = (int)(y - 0.698001 * (u - 128) - 0.703125 * (v - 128));
  int b1 = (int)(y + 1.732446 * (u - 128));
243

W
wangliu 已提交
244 245 246 247 248 249
  r1 = (int)fminf(255, fmaxf(0, r1));
  g1 = (int)fminf(255, fmaxf(0, g1));
  b1 = (int)fminf(255, fmaxf(0, b1));
  *r = r1;
  *g = g1;
  *b = b1;
250

W
wangliu 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
  return 0;
}
void convert_nv21_to_matrix(uint8_t *nv21, float *matrix, int width, int height,
                            int targetWidth, int targetHeight, float *means) {
  const uint8_t *yData = nv21;
  const uint8_t *vuData = nv21 + width * height;

  const int yRowStride = width;
  const int vuRowStride = width;

  float scale_x = width * 1.0 / targetWidth;
  float scale_y = height * 1.0 / targetHeight;

  for (int j = 0; j < targetHeight; ++j) {
    int y = j * scale_y;
    const uint8_t *pY = yData + y * yRowStride;
    const uint8_t *pVU = vuData + (y >> 1) * vuRowStride;
    for (int i = 0; i < targetWidth; ++i) {
      int x = i * scale_x;
      const int offset = ((x >> 1) << 1);
      float r = 0;
      float g = 0;
      float b = 0;
      yuv_to_rgb(pY[x], pVU[offset + 1], pVU[offset], &r, &g, &b);
      int r_index = j * targetWidth + i;
      int g_index = r_index + targetWidth * targetHeight;
      int b_index = g_index + targetWidth * targetHeight;
      matrix[r_index] = r - means[0];
      matrix[g_index] = g - means[1];
      matrix[b_index] = b - means[2];
281
    }
W
wangliu 已提交
282 283
  }
}
284

W
wangliu 已提交
285 286 287
JNIEXPORT jfloatArray JNICALL Java_com_baidu_paddle_PML_predictYuv(
    JNIEnv *env, jclass thiz, jbyteArray yuv_, jint imgwidth, jint imgHeight,
    jintArray ddims, jfloatArray meanValues) {
288 289
  std::lock_guard<std::mutex> lock(shared_mutex);

W
wangliu 已提交
290
  ANDROIDLOGI("predictYuv invoked");
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  jfloatArray result = NULL;

#ifdef ENABLE_EXCEPTION
  try {
    jsize ddim_size = env->GetArrayLength(ddims);
    if (ddim_size != 4) {
      ANDROIDLOGE("ddims size not equal to 4");
    }
    jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
    framework::DDim ddim = framework::make_ddim(
        {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
    int length = framework::product(ddim);
    float matrix[length];
    jbyte *yuv = env->GetByteArrayElements(yuv_, NULL);
    float *meansPointer = nullptr;
    if (nullptr != meanValues) {
      meansPointer = env->GetFloatArrayElements(meanValues, NULL);
    }
    convert_nv21_to_matrix((uint8_t *)yuv, matrix, imgwidth, imgHeight, ddim[3],
                           ddim[2], meansPointer);
    int count = 0;
    framework::Tensor input;
    input.Resize(ddim);
    auto input_ptr = input.mutable_data<float>();
    for (int i = 0; i < length; i++) {
      input_ptr[i] = matrix[i];
    }
318 319
    getPaddleMobileInstance()->Predict(input);
    auto output = getPaddleMobileInstance()->Fetch();
320 321 322 323 324 325 326 327 328 329 330
    count = output->numel();
    result = env->NewFloatArray(count);
    env->SetFloatArrayRegion(result, 0, count, output->data<float>());
    env->ReleaseByteArrayElements(yuv_, yuv, 0);
    env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
    env->ReleaseFloatArrayElements(meanValues, meansPointer, 0);
    ANDROIDLOGI("predictYuv finished");
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }
#else
W
wangliu 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  jsize ddim_size = env->GetArrayLength(ddims);
  if (ddim_size != 4) {
    ANDROIDLOGE("ddims size not equal to 4");
  }
  jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
  framework::DDim ddim = framework::make_ddim(
      {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
  int length = framework::product(ddim);
  float matrix[length];
  jbyte *yuv = env->GetByteArrayElements(yuv_, NULL);
  float *meansPointer = nullptr;
  if (nullptr != meanValues) {
    meansPointer = env->GetFloatArrayElements(meanValues, NULL);
  }
  convert_nv21_to_matrix((uint8_t *)yuv, matrix, imgwidth, imgHeight, ddim[3],
                         ddim[2], meansPointer);
  int count = 0;
  framework::Tensor input;
  input.Resize(ddim);
  auto input_ptr = input.mutable_data<float>();
  for (int i = 0; i < length; i++) {
    input_ptr[i] = matrix[i];
  }
354 355
  getPaddleMobileInstance()->Predict(input);
  auto output = getPaddleMobileInstance()->Fetch();
W
wangliu 已提交
356 357 358 359 360 361 362
  count = output->numel();
  result = env->NewFloatArray(count);
  env->SetFloatArrayRegion(result, 0, count, output->data<float>());
  env->ReleaseByteArrayElements(yuv_, yuv, 0);
  env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
  env->ReleaseFloatArrayElements(meanValues, meansPointer, 0);
  ANDROIDLOGI("predictYuv finished");
363 364
#endif

W
wangliu 已提交
365
  return result;
366
}
xiebaiyuan's avatar
xiebaiyuan 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
JNIEXPORT jlongArray JNICALL
Java_com_baidu_paddle_PML_predictLod(JNIEnv *env, jclass thiz, jlongArray buf) {
  std::lock_guard<std::mutex> lock(shared_mutex);

  jlong *ddim_ptr = env->GetLongArrayElements(buf, NULL);
  jsize ddim_size = env->GetArrayLength(buf);
  std::vector<int64_t> ids;

  for (int i = 0; i < ddim_size; ++i) {
    jlong x = ddim_ptr[i];
    ids.push_back((int64_t)x);
  }

  paddle_mobile::framework::LoDTensor words;

  auto size = static_cast<int>(ids.size());

  paddle_mobile::framework::LoD lod{{0, ids.size()}};
  DDim dims{size, 1};
  words.Resize(dims);
  words.set_lod(lod);
  auto *pdata = words.mutable_data<int64_t>();
  size_t n = words.numel() * sizeof(int64_t);
  memcpy(pdata, ids.data(), n);
391 392
  paddle_mobile.Predict(words);
  auto vec_result = paddle_mobile.Fetch();
xiebaiyuan's avatar
xiebaiyuan 已提交
393 394 395 396 397 398 399
  int count = vec_result->numel();
  jlongArray result = NULL;
  ANDROIDLOGE("predict nlp size %d", count);

  result = env->NewLongArray(count);
  env->SetLongArrayRegion(result, 0, count, vec_result->data<int64_t>());

E
eclipsess 已提交
400
  env->ReleaseLongArrayElements(buf, ddim_ptr, 0);
xiebaiyuan's avatar
xiebaiyuan 已提交
401 402
  return result;
}
403

404 405 406
JNIEXPORT void JNICALL Java_com_baidu_paddle_PML_setThread(JNIEnv *env,
                                                           jclass thiz,
                                                           jint threadCount) {
407 408
  std::lock_guard<std::mutex> lock(shared_mutex);

409
  ANDROIDLOGI("setThreadCount %d", threadCount);
410 411 412 413 414 415 416
#ifdef ENABLE_EXCEPTION
  try {
    getPaddleMobileInstance()->SetThreadNum((int)threadCount);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }
#else
417
  getPaddleMobileInstance()->SetThreadNum((int)threadCount);
418 419

#endif
420 421
}

W
wangliu 已提交
422
JNIEXPORT void JNICALL Java_com_baidu_paddle_PML_clear(JNIEnv *env,
423
                                                       jclass thiz) {
424 425 426 427 428 429 430 431 432 433
  std::lock_guard<std::mutex> lock(shared_mutex);

#ifdef ENABLE_EXCEPTION
  try {
    getPaddleMobileInstance()->Clear();

  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }
#else
434
  getPaddleMobileInstance()->Clear();
435 436

#endif
437
}
W
wangliu 已提交
438 439 440 441 442 443 444 445 446

}  // namespace jni
}  // namespace paddle_mobile

#ifdef __cplusplus
}
#endif

#endif