paddle_mobile_jni.cpp 14.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef ANDROID

#include "paddle_mobile_jni.h"
D
dolphin8 已提交
18
#include <cmath>
19 20
#include <string>
#include <vector>
21 22 23 24
#include "common/log.h"
#include "framework/tensor.h"
#include "io/paddle_mobile.h"

25 26 27 28
#ifdef ENABLE_EXCEPTION
#include "common/enforce.h"
#endif

W
wangliu 已提交
29 30 31
#ifdef __cplusplus
extern "C" {
#endif
32

W
wangliu 已提交
33 34
namespace paddle_mobile {
namespace jni {
35

W
wangliu 已提交
36 37 38 39 40 41
using framework::DDim;
using framework::Program;
using framework::Tensor;
using paddle_mobile::CPU;
using std::string;

42
const char *ANDROID_LOG_TAG =
W
wangliu 已提交
43
    "paddle_mobile LOG built on " __DATE__ " " __TIME__;
44 45
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
static std::mutex shared_mutex;
W
wangliu 已提交
46

47
PaddleMobile<CPU> *getPaddleMobileInstance() { return &paddle_mobile; }
W
wangliu 已提交
48 49 50 51 52 53 54 55

string jstring2cppstring(JNIEnv *env, jstring jstr) {
  const char *cstr = env->GetStringUTFChars(jstr, 0);
  string cppstr(cstr);
  env->ReleaseStringUTFChars(jstr, cstr);
  return cppstr;
}

56 57
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(
    JNIEnv *env, jclass thiz, jstring modelPath, jboolean lod_mode = false) {
58
  std::lock_guard<std::mutex> lock(shared_mutex);
59
  ANDROIDLOGI("load invoked");
W
wangliu 已提交
60
  bool optimize = true;
61 62 63 64
  bool isLoadOk = false;
#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
65 66
        jstring2cppstring(env, modelPath), optimize, false, 1,
        static_cast<bool>(lod_mode));
67 68 69 70 71 72
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
  isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
73 74
                                             optimize, false, 1,
                                             static_cast<bool>(lod_mode));
75 76
#endif
  return static_cast<jboolean>(isLoadOk);
W
wangliu 已提交
77 78
}

xiebaiyuan's avatar
xiebaiyuan 已提交
79 80 81 82 83 84 85 86 87 88
JNIEXPORT jboolean JNICALL
Java_com_baidu_paddle_PML_loadnlp(JNIEnv *env, jclass thiz, jstring modelPath) {
  std::lock_guard<std::mutex> lock(shared_mutex);
  ANDROIDLOGI("load invoked");
  bool optimize = true;
  bool isLoadOk = false;

#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
H
hjchen2 已提交
89
        jstring2cppstring(env, modelPath), optimize, false, 1, true);
xiebaiyuan's avatar
xiebaiyuan 已提交
90 91 92 93 94 95
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
  isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
H
hjchen2 已提交
96
                                             optimize, false, 1, true);
xiebaiyuan's avatar
xiebaiyuan 已提交
97 98 99 100
#endif
  return static_cast<jboolean>(isLoadOk);
}

101 102
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadQualified(
    JNIEnv *env, jclass thiz, jstring modelPath) {
103 104
  std::lock_guard<std::mutex> lock(shared_mutex);

105 106 107
  ANDROIDLOGI("loadQualified invoked");
  bool optimize = true;
  bool qualified = true;
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  bool isLoadOk = false;

#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
        jstring2cppstring(env, modelPath), optimize, qualified);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
  isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                             optimize, qualified);
#endif

  return static_cast<jboolean>(isLoadOk);
124 125
}

126 127
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombined(
    JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath) {
128
  std::lock_guard<std::mutex> lock(shared_mutex);
129
  ANDROIDLOGI("loadCombined invoked");
130
  bool optimize = true;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  bool isLoadOk = false;

#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
        jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
        optimize);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
  isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                             jstring2cppstring(env, paramPath),
                                             optimize);
#endif
  return static_cast<jboolean>(isLoadOk);
148 149
}

150 151
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombinedQualified(
    JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath) {
152
  std::lock_guard<std::mutex> lock(shared_mutex);
153 154 155
  ANDROIDLOGI("loadCombinedQualified invoked");
  bool optimize = true;
  bool qualified = true;
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  bool isLoadOk = false;

#ifdef ENABLE_EXCEPTION
  try {
    isLoadOk = getPaddleMobileInstance()->Load(
        jstring2cppstring(env, modelPath), jstring2cppstring(env, paramPath),
        optimize, qualified);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
    isLoadOk = false;
  }
#else
  isLoadOk = getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                             jstring2cppstring(env, paramPath),
                                             optimize, qualified);
#endif
  return static_cast<jboolean>(isLoadOk);
173 174
}

W
wangliu 已提交
175 176
JNIEXPORT jfloatArray JNICALL Java_com_baidu_paddle_PML_predictImage(
    JNIEnv *env, jclass thiz, jfloatArray buf, jintArray ddims) {
177 178
  std::lock_guard<std::mutex> lock(shared_mutex);

179
  ANDROIDLOGI("predictImage invoked");
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  jfloatArray result = NULL;

#ifdef ENABLE_EXCEPTION
  ANDROIDLOGE("ENABLE_EXCEPTION!");

  try {
    jsize ddim_size = env->GetArrayLength(ddims);
    if (ddim_size != 4) {
      ANDROIDLOGE("ddims size not equal to 4");
    }
    jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
    framework::DDim ddim = framework::make_ddim(
        {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
    int length = framework::product(ddim);
    int count = 0;
    float *dataPointer = nullptr;
    if (nullptr != buf) {
      dataPointer = env->GetFloatArrayElements(buf, NULL);
    }
    framework::Tensor input;
    input.Resize(ddim);
    auto input_ptr = input.mutable_data<float>();
    for (int i = 0; i < length; i++) {
      input_ptr[i] = dataPointer[i];
    }
205 206
    getPaddleMobileInstance()->Predict(input);
    auto output = getPaddleMobileInstance()->Fetch();
207 208 209 210 211 212 213 214 215 216 217 218 219
    count = output->numel();
    result = env->NewFloatArray(count);
    env->SetFloatArrayRegion(result, 0, count, output->data<float>());
    env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
    env->DeleteLocalRef(ddims);
    env->ReleaseFloatArrayElements(buf, dataPointer, 0);
    env->DeleteLocalRef(buf);

  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }

#else
220
  jsize ddim_size = env->GetArrayLength(ddims);
W
wangliu 已提交
221 222
  if (ddim_size != 4) {
    ANDROIDLOGE("ddims size not equal to 4");
223 224
  }
  jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
W
wangliu 已提交
225 226
  framework::DDim ddim = framework::make_ddim(
      {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
227
  int length = framework::product(ddim);
W
wangliu 已提交
228 229 230 231 232 233 234 235
  int count = 0;
  float *dataPointer = nullptr;
  if (nullptr != buf) {
    dataPointer = env->GetFloatArrayElements(buf, NULL);
  }
  framework::Tensor input;
  input.Resize(ddim);
  auto input_ptr = input.mutable_data<float>();
236
  for (int i = 0; i < length; i++) {
W
wangliu 已提交
237 238
    input_ptr[i] = dataPointer[i];
  }
239 240
  getPaddleMobileInstance()->Predict(input);
  auto output = getPaddleMobileInstance()->Fetch();
W
wangliu 已提交
241 242 243
  count = output->numel();
  result = env->NewFloatArray(count);
  env->SetFloatArrayRegion(result, 0, count, output->data<float>());
W
wangliu 已提交
244
  env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
245 246 247
  env->DeleteLocalRef(ddims);
  env->ReleaseFloatArrayElements(buf, dataPointer, 0);
  env->DeleteLocalRef(buf);
Z
zhaojiaying01 已提交
248
//  env->DeleteLocalRef(dataPointer);
249 250
#endif

251
  ANDROIDLOGI("predictImage finished");
252

W
wangliu 已提交
253 254 255
  return result;
}

W
wangliu 已提交
256 257 258 259
inline int yuv_to_rgb(int y, int u, int v, float *r, float *g, float *b) {
  int r1 = (int)(y + 1.370705 * (v - 128));
  int g1 = (int)(y - 0.698001 * (u - 128) - 0.703125 * (v - 128));
  int b1 = (int)(y + 1.732446 * (u - 128));
260

W
wangliu 已提交
261 262 263 264 265 266
  r1 = (int)fminf(255, fmaxf(0, r1));
  g1 = (int)fminf(255, fmaxf(0, g1));
  b1 = (int)fminf(255, fmaxf(0, b1));
  *r = r1;
  *g = g1;
  *b = b1;
267

W
wangliu 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
  return 0;
}
void convert_nv21_to_matrix(uint8_t *nv21, float *matrix, int width, int height,
                            int targetWidth, int targetHeight, float *means) {
  const uint8_t *yData = nv21;
  const uint8_t *vuData = nv21 + width * height;

  const int yRowStride = width;
  const int vuRowStride = width;

  float scale_x = width * 1.0 / targetWidth;
  float scale_y = height * 1.0 / targetHeight;

  for (int j = 0; j < targetHeight; ++j) {
    int y = j * scale_y;
    const uint8_t *pY = yData + y * yRowStride;
    const uint8_t *pVU = vuData + (y >> 1) * vuRowStride;
    for (int i = 0; i < targetWidth; ++i) {
      int x = i * scale_x;
      const int offset = ((x >> 1) << 1);
      float r = 0;
      float g = 0;
      float b = 0;
      yuv_to_rgb(pY[x], pVU[offset + 1], pVU[offset], &r, &g, &b);
      int r_index = j * targetWidth + i;
      int g_index = r_index + targetWidth * targetHeight;
      int b_index = g_index + targetWidth * targetHeight;
      matrix[r_index] = r - means[0];
      matrix[g_index] = g - means[1];
      matrix[b_index] = b - means[2];
298
    }
W
wangliu 已提交
299 300
  }
}
301

W
wangliu 已提交
302 303 304
JNIEXPORT jfloatArray JNICALL Java_com_baidu_paddle_PML_predictYuv(
    JNIEnv *env, jclass thiz, jbyteArray yuv_, jint imgwidth, jint imgHeight,
    jintArray ddims, jfloatArray meanValues) {
305 306
  std::lock_guard<std::mutex> lock(shared_mutex);

W
wangliu 已提交
307
  ANDROIDLOGI("predictYuv invoked");
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
  jfloatArray result = NULL;

#ifdef ENABLE_EXCEPTION
  try {
    jsize ddim_size = env->GetArrayLength(ddims);
    if (ddim_size != 4) {
      ANDROIDLOGE("ddims size not equal to 4");
    }
    jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
    framework::DDim ddim = framework::make_ddim(
        {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
    int length = framework::product(ddim);
    float matrix[length];
    jbyte *yuv = env->GetByteArrayElements(yuv_, NULL);
    float *meansPointer = nullptr;
    if (nullptr != meanValues) {
      meansPointer = env->GetFloatArrayElements(meanValues, NULL);
    }
    convert_nv21_to_matrix((uint8_t *)yuv, matrix, imgwidth, imgHeight, ddim[3],
                           ddim[2], meansPointer);
    int count = 0;
    framework::Tensor input;
    input.Resize(ddim);
    auto input_ptr = input.mutable_data<float>();
    for (int i = 0; i < length; i++) {
      input_ptr[i] = matrix[i];
    }
335 336
    getPaddleMobileInstance()->Predict(input);
    auto output = getPaddleMobileInstance()->Fetch();
337 338 339 340 341 342 343 344 345 346 347
    count = output->numel();
    result = env->NewFloatArray(count);
    env->SetFloatArrayRegion(result, 0, count, output->data<float>());
    env->ReleaseByteArrayElements(yuv_, yuv, 0);
    env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
    env->ReleaseFloatArrayElements(meanValues, meansPointer, 0);
    ANDROIDLOGI("predictYuv finished");
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }
#else
W
wangliu 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  jsize ddim_size = env->GetArrayLength(ddims);
  if (ddim_size != 4) {
    ANDROIDLOGE("ddims size not equal to 4");
  }
  jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
  framework::DDim ddim = framework::make_ddim(
      {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
  int length = framework::product(ddim);
  float matrix[length];
  jbyte *yuv = env->GetByteArrayElements(yuv_, NULL);
  float *meansPointer = nullptr;
  if (nullptr != meanValues) {
    meansPointer = env->GetFloatArrayElements(meanValues, NULL);
  }
  convert_nv21_to_matrix((uint8_t *)yuv, matrix, imgwidth, imgHeight, ddim[3],
                         ddim[2], meansPointer);
  int count = 0;
  framework::Tensor input;
  input.Resize(ddim);
  auto input_ptr = input.mutable_data<float>();
  for (int i = 0; i < length; i++) {
    input_ptr[i] = matrix[i];
  }
371 372
  getPaddleMobileInstance()->Predict(input);
  auto output = getPaddleMobileInstance()->Fetch();
W
wangliu 已提交
373 374 375 376 377 378 379
  count = output->numel();
  result = env->NewFloatArray(count);
  env->SetFloatArrayRegion(result, 0, count, output->data<float>());
  env->ReleaseByteArrayElements(yuv_, yuv, 0);
  env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
  env->ReleaseFloatArrayElements(meanValues, meansPointer, 0);
  ANDROIDLOGI("predictYuv finished");
380 381
#endif

W
wangliu 已提交
382
  return result;
383
}
xiebaiyuan's avatar
xiebaiyuan 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
JNIEXPORT jlongArray JNICALL
Java_com_baidu_paddle_PML_predictLod(JNIEnv *env, jclass thiz, jlongArray buf) {
  std::lock_guard<std::mutex> lock(shared_mutex);

  jlong *ddim_ptr = env->GetLongArrayElements(buf, NULL);
  jsize ddim_size = env->GetArrayLength(buf);
  std::vector<int64_t> ids;

  for (int i = 0; i < ddim_size; ++i) {
    jlong x = ddim_ptr[i];
    ids.push_back((int64_t)x);
  }

  paddle_mobile::framework::LoDTensor words;

  auto size = static_cast<int>(ids.size());

  paddle_mobile::framework::LoD lod{{0, ids.size()}};
  DDim dims{size, 1};
  words.Resize(dims);
  words.set_lod(lod);
  auto *pdata = words.mutable_data<int64_t>();
  size_t n = words.numel() * sizeof(int64_t);
  memcpy(pdata, ids.data(), n);
408 409
  paddle_mobile.Predict(words);
  auto vec_result = paddle_mobile.Fetch();
xiebaiyuan's avatar
xiebaiyuan 已提交
410 411 412 413 414 415 416
  int count = vec_result->numel();
  jlongArray result = NULL;
  ANDROIDLOGE("predict nlp size %d", count);

  result = env->NewLongArray(count);
  env->SetLongArrayRegion(result, 0, count, vec_result->data<int64_t>());

E
eclipsess 已提交
417
  env->ReleaseLongArrayElements(buf, ddim_ptr, 0);
xiebaiyuan's avatar
xiebaiyuan 已提交
418 419
  return result;
}
420

421 422 423
JNIEXPORT void JNICALL Java_com_baidu_paddle_PML_setThread(JNIEnv *env,
                                                           jclass thiz,
                                                           jint threadCount) {
424 425
  std::lock_guard<std::mutex> lock(shared_mutex);

426
  ANDROIDLOGI("setThreadCount %d", threadCount);
427 428 429 430 431 432 433
#ifdef ENABLE_EXCEPTION
  try {
    getPaddleMobileInstance()->SetThreadNum((int)threadCount);
  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }
#else
434
  getPaddleMobileInstance()->SetThreadNum((int)threadCount);
435 436

#endif
437 438
}

W
wangliu 已提交
439
JNIEXPORT void JNICALL Java_com_baidu_paddle_PML_clear(JNIEnv *env,
440
                                                       jclass thiz) {
441 442 443 444 445 446 447 448 449 450
  std::lock_guard<std::mutex> lock(shared_mutex);

#ifdef ENABLE_EXCEPTION
  try {
    getPaddleMobileInstance()->Clear();

  } catch (paddle_mobile::PaddleMobileException &e) {
    ANDROIDLOGE("jni got an PaddleMobileException! ", e.what());
  }
#else
451
  getPaddleMobileInstance()->Clear();
452 453

#endif
454
}
W
wangliu 已提交
455 456 457 458 459 460 461 462 463

}  // namespace jni
}  // namespace paddle_mobile

#ifdef __cplusplus
}
#endif

#endif