conv_add_relu_kernel.cpp 2.7 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADDRELU_OP

#include "operators/kernel/conv_add_relu_kernel.h"
#include "common/enforce.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam *param) {
  bool relu_enabled = true;
  const Tensor *input = param->Input();
Z
zhangyang 已提交
27
  auto input_ptr = input->data<half>();
Z
zhangyang 已提交
28 29 30 31 32
  const Tensor *bias = param->Bias();
  auto bias_ptr = bias->data<float>();
  const Tensor *filter = param->Filter();
  auto filter_ptr = filter->data<float>();
  Tensor *out = param->Output();
Z
zhangyang 已提交
33
  auto out_ptr = out->mutable_data<half>();
Z
zhangyang 已提交
34

Z
zhangyang 已提交
35 36
  PADDLE_MOBILE_ENFORCE(input->dims()[1] == bias->dims()[0],
                        "Image channel should be equal to bias number");
Z
zhangyang 已提交
37 38
  int channel = input->dims()[1];
  float *bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sizeof(float));
Z
zhangyang 已提交
39 40 41
  for (int i = 0; i < channel; i++) {
    bs_ptr[i * 2] = 1;
    bs_ptr[i * 2 + 1] = bias_ptr[i];
Z
zhangyang 已提交
42 43 44 45
  }

  fpga::ConvArgs convArgs;
  convArgs.relu_enabled = relu_enabled;
Z
zhangyang 已提交
46
  convArgs.filter_address = (void *)filter_ptr;
Z
zhangyang 已提交
47 48
  convArgs.filter_num = filter->dims()[0];
  convArgs.group_num = param->Groups();
Z
zhangyang 已提交
49
  convArgs.sb_address = (void *)bs_ptr;
Z
zhangyang 已提交
50 51 52 53
  convArgs.kernel.stride_h = param->Strides()[0];
  convArgs.kernel.stride_w = param->Strides()[1];
  convArgs.kernel.height = filter->dims()[2];
  convArgs.kernel.width = filter->dims()[3];
Z
zhangyang 已提交
54
  convArgs.image.address = (void *)input_ptr;
Z
zhangyang 已提交
55 56 57 58 59 60 61
  convArgs.image.channels = input->dims()[1];
  convArgs.image.height = input->dims()[2];
  convArgs.image.width = input->dims()[3];

  convArgs.image.pad_height = param->Paddings()[0];
  convArgs.image.pad_width = param->Paddings()[1];
  convArgs.image.scale_address = input->fpga_args().scale_pointer();
Z
zhangyang 已提交
62
  convArgs.output.address = (void *)out_ptr;
Z
zhangyang 已提交
63 64 65 66 67 68
  convArgs.output.scale_address = out->fpga_args().scale_pointer();
  param->SetFpgaArgs(convArgs);
  return true;
}

template <>
Z
zhangyang 已提交
69 70
void ConvAddReluKernel<FPGA, float>::Compute(
    const FusionConvAddReluParam &param) const {
Z
zhangyang 已提交
71 72 73 74 75 76 77 78
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvAddReluKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif