cxx_api.cc 6.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "lite/utils/io.h"
#ifdef LITE_WITH_NPU
#include "lite/npu/npu_helper.h"
#endif

namespace paddle {
namespace lite {

void Predictor::SaveModel(const std::string &dir,
                          lite_api::LiteModelType model_type) {
  if (!program_) {
    GenRuntimeProgram();
  }
  program_->SaveOpInfosToProgram(&program_desc_);
34
  program_->UpdateVarsOfProgram(&program_desc_);
Y
Yan Chunwei 已提交
35 36
  switch (model_type) {
    case lite_api::LiteModelType::kProtobuf:
37
      SaveModelPb(dir, *program_->exec_scope(), program_desc_, true);
Y
Yan Chunwei 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
      break;
    case lite_api::LiteModelType::kNaiveBuffer:
      SaveModelNaive(dir, *program_->exec_scope(), program_desc_);
      break;
    default:
      LOG(FATAL) << "Unknown model type";
  }
#ifdef LITE_WITH_NPU
  for (auto name : npu::DeviceInfo::Global().AllClientNames()) {
    // the npu offline model is saved in current dir
    // so just copy to dst dir
    CHECK_EQ(
        system(string_format("cp -r %s %s", name.c_str(), dir.c_str()).c_str()),
        0)
        << "Failed copy NPU model to " << dir;
  }
#endif
}

lite::Tensor *Predictor::GetInput(size_t offset) {
  auto *_feed_list = exec_scope_->FindVar("feed");
  CHECK(_feed_list) << "no feed variable in exec_scope";
  auto *feed_list = _feed_list->GetMutable<std::vector<lite::Tensor>>();
  if (offset >= feed_list->size()) {
    feed_list->resize(offset + 1);
  }
  return &feed_list->at(offset);
}

const lite::Tensor *Predictor::GetOutput(size_t offset) const {
  auto *_fetch_list = exec_scope_->FindVar("fetch");
  CHECK(_fetch_list) << "no fatch variable in exec_scope";
  auto &fetch_list = *_fetch_list->GetMutable<std::vector<lite::Tensor>>();
  CHECK_LT(offset, fetch_list.size()) << "offset " << offset << " overflow";
  return &fetch_list.at(offset);
}

T
TianXiaogang 已提交
75 76 77 78 79 80 81
const std::vector<lite::Tensor> *Predictor::GetOutputs() const {
  auto *_fetch_list = exec_scope_->FindVar("fetch");
  CHECK(_fetch_list) << "no fatch variable in exec_scope";
  auto &fetch_list = *_fetch_list->GetMutable<std::vector<lite::Tensor>>();
  return &fetch_list;
}

Y
Yan Chunwei 已提交
82 83 84 85 86
const cpp::ProgramDesc &Predictor::program_desc() const {
  return program_desc_;
}
const RuntimeProgram &Predictor::runtime_program() const { return *program_; }

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
void Predictor::Build(const lite_api::CxxConfig &config,
                      const std::vector<Place> &valid_places,
                      const std::vector<std::string> &passes,
                      lite_api::LiteModelType model_type) {
  const std::string &model_path = config.model_dir();
  const std::string &model_file = config.model_file();
  const std::string &param_file = config.param_file();
  const Place prefer_place = config.preferred_place();
  const bool model_from_memory = config.model_from_memory();
  LOG(INFO) << "load from memory " << model_from_memory;

  Build(model_path,
        model_file,
        param_file,
        prefer_place,
        valid_places,
        passes,
        model_type,
        model_from_memory);
}
Y
Yan Chunwei 已提交
107
void Predictor::Build(const std::string &model_path,
108 109
                      const std::string &model_file,
                      const std::string &param_file,
Y
Yan Chunwei 已提交
110 111 112
                      const Place &prefer_place,
                      const std::vector<Place> &valid_places,
                      const std::vector<std::string> &passes,
113 114
                      lite_api::LiteModelType model_type,
                      bool model_from_memory) {
Y
Yan Chunwei 已提交
115
  switch (model_type) {
116 117 118 119 120 121 122 123 124 125
    case lite_api::LiteModelType::kProtobuf: {
      bool combined_param = false;
      if (!model_file.empty() && !param_file.empty()) {
        combined_param = true;
      }
      LoadModelPb(model_path,
                  model_file,
                  param_file,
                  scope_.get(),
                  &program_desc_,
126 127
                  combined_param,
                  model_from_memory);
128
    } break;
Y
Yan Chunwei 已提交
129
    case lite_api::LiteModelType::kNaiveBuffer:
130 131
      CHECK(!model_path.empty())
          << "NaiveBuffer backend only supported combined param";
Y
Yan Chunwei 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
      LoadModelNaive(model_path, scope_.get(), &program_desc_);
      break;
    default:
      LOG(FATAL) << "Unknown model type";
  }
  Build(program_desc_, prefer_place, valid_places, passes);
}

void Predictor::Build(const cpp::ProgramDesc &desc,
                      const Place &prefer_place,
                      const std::vector<Place> &valid_places,
                      const std::vector<std::string> &passes) {
  program_desc_ = desc;
  Program program(desc, scope_, valid_places);
  optimizer_.KernelPickPreferPlace(prefer_place);
  core::KernelPickFactor factor;
  factor.ConsiderTarget();
  factor.ConsiderPrecision();
  optimizer_.Run(std::move(program), valid_places, factor, passes);
  exec_scope_ = optimizer_.exec_scope();
}

void Predictor::GenRuntimeProgram() {
  program_ = optimizer_.GenRuntimeProgram();
  CHECK_EQ(exec_scope_, program_->exec_scope());
  program_generated_ = true;
}

const lite::Tensor *Predictor::GetTensor(const std::string &name) const {
  auto *var = exec_scope_->FindVar(name);
  return &var->Get<lite::Tensor>();
}

#ifdef LITE_WITH_TRAIN
void Predictor::FeedVars(const std::vector<framework::Tensor> &tensors) {
  auto var = scope_->FindVar("feed");
  auto &feed_list = *(var->GetMutable<std::vector<lite::Tensor>>());
  feed_list.resize(tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i)
    feed_list[i].ShareDataWith(tensors[i]);
}
#endif

}  // namespace lite
}  // namespace paddle