cxx_api.cc 4.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "lite/utils/io.h"
#ifdef LITE_WITH_NPU
#include "lite/npu/npu_helper.h"
#endif

namespace paddle {
namespace lite {

void Predictor::SaveModel(const std::string &dir,
                          lite_api::LiteModelType model_type) {
  if (!program_) {
    GenRuntimeProgram();
  }
  program_->SaveOpInfosToProgram(&program_desc_);
  switch (model_type) {
    case lite_api::LiteModelType::kProtobuf:
      SaveModelPb(dir, *program_->exec_scope(), program_desc_);
      break;
    case lite_api::LiteModelType::kNaiveBuffer:
      SaveModelNaive(dir, *program_->exec_scope(), program_desc_);
      break;
    default:
      LOG(FATAL) << "Unknown model type";
  }
#ifdef LITE_WITH_NPU
  for (auto name : npu::DeviceInfo::Global().AllClientNames()) {
    // the npu offline model is saved in current dir
    // so just copy to dst dir
    CHECK_EQ(
        system(string_format("cp -r %s %s", name.c_str(), dir.c_str()).c_str()),
        0)
        << "Failed copy NPU model to " << dir;
  }
#endif
}

lite::Tensor *Predictor::GetInput(size_t offset) {
  auto *_feed_list = exec_scope_->FindVar("feed");
  CHECK(_feed_list) << "no feed variable in exec_scope";
  auto *feed_list = _feed_list->GetMutable<std::vector<lite::Tensor>>();
  if (offset >= feed_list->size()) {
    feed_list->resize(offset + 1);
  }
  return &feed_list->at(offset);
}

const lite::Tensor *Predictor::GetOutput(size_t offset) const {
  auto *_fetch_list = exec_scope_->FindVar("fetch");
  CHECK(_fetch_list) << "no fatch variable in exec_scope";
  auto &fetch_list = *_fetch_list->GetMutable<std::vector<lite::Tensor>>();
  CHECK_LT(offset, fetch_list.size()) << "offset " << offset << " overflow";
  return &fetch_list.at(offset);
}

T
TianXiaogang 已提交
74 75 76 77 78 79 80
const std::vector<lite::Tensor> *Predictor::GetOutputs() const {
  auto *_fetch_list = exec_scope_->FindVar("fetch");
  CHECK(_fetch_list) << "no fatch variable in exec_scope";
  auto &fetch_list = *_fetch_list->GetMutable<std::vector<lite::Tensor>>();
  return &fetch_list;
}

Y
Yan Chunwei 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
const cpp::ProgramDesc &Predictor::program_desc() const {
  return program_desc_;
}
const RuntimeProgram &Predictor::runtime_program() const { return *program_; }

void Predictor::Build(const std::string &model_path,
                      const Place &prefer_place,
                      const std::vector<Place> &valid_places,
                      const std::vector<std::string> &passes,
                      lite_api::LiteModelType model_type) {
  LOG(INFO) << "Load model from " << model_path;
  switch (model_type) {
    case lite_api::LiteModelType::kProtobuf:
      LoadModelPb(model_path, scope_.get(), &program_desc_);
      break;
    case lite_api::LiteModelType::kNaiveBuffer:
      LoadModelNaive(model_path, scope_.get(), &program_desc_);
      break;
    default:
      LOG(FATAL) << "Unknown model type";
  }
  Build(program_desc_, prefer_place, valid_places, passes);
}

void Predictor::Build(const cpp::ProgramDesc &desc,
                      const Place &prefer_place,
                      const std::vector<Place> &valid_places,
                      const std::vector<std::string> &passes) {
  program_desc_ = desc;
  Program program(desc, scope_, valid_places);
  optimizer_.KernelPickPreferPlace(prefer_place);
  core::KernelPickFactor factor;
  factor.ConsiderTarget();
  factor.ConsiderPrecision();
  optimizer_.Run(std::move(program), valid_places, factor, passes);
  exec_scope_ = optimizer_.exec_scope();
}

void Predictor::GenRuntimeProgram() {
  program_ = optimizer_.GenRuntimeProgram();
  CHECK_EQ(exec_scope_, program_->exec_scope());
  program_generated_ = true;
}

void Predictor::GenNPURuntimeProgram() {
  program_ = optimizer_.GenNPURuntimeProgram();
  CHECK_EQ(exec_scope_, program_->exec_scope());
  program_generated_ = true;
}

const lite::Tensor *Predictor::GetTensor(const std::string &name) const {
  auto *var = exec_scope_->FindVar(name);
  return &var->Get<lite::Tensor>();
}

#ifdef LITE_WITH_TRAIN
void Predictor::FeedVars(const std::vector<framework::Tensor> &tensors) {
  auto var = scope_->FindVar("feed");
  auto &feed_list = *(var->GetMutable<std::vector<lite::Tensor>>());
  feed_list.resize(tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i)
    feed_list[i].ShareDataWith(tensors[i]);
}
#endif

}  // namespace lite
}  // namespace paddle