conv_arm_func.h 14.4 KB
Newer Older
L
liuruilong 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

L
liuruilong 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liuruilong 已提交
6

L
liuruilong 已提交
7 8 9 10 11 12 13 14 15 16 17
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#pragma once
18
#include <vector>
19
#include "operators/math/conv_func.h"
H
hjchen2 已提交
20
#include "operators/math/depthwise_conv3x3.h"
21
#include "operators/math/depthwise_conv5x5.h"
22 23
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
24
#include "operators/math/pad.h"
25
#include "operators/math/vol2col.h"
H
hjchen2 已提交
26
#include "operators/math/winograd/winograd_transform.h"
L
liuruilong 已提交
27 28 29 30
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {
31

32
template <typename Itype, typename Otype>
H
hjchen2 已提交
33
inline void GemmConv(const ConvParam<CPU> &param) {
L
liuruilong 已提交
34 35 36
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();
37
  output->mutable_data<Otype>();
H
hjchen2 已提交
38

L
liuruilong 已提交
39
  int groups = param.Groups();
40 41 42
  const std::vector<int> strides = param.Strides();
  const std::vector<int> paddings = param.Paddings();
  const std::vector<int> dilations = param.Dilations();
L
liuruilong 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
L
liuruilong 已提交
56
      framework::flatten_to_2d(col_shape, data_dim + 1);
L
liuruilong 已提交
57

58 59
  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liuruilong 已提交
60 61 62
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
63
    col.mutable_data<Itype>(col_shape);
L
liuruilong 已提交
64 65 66 67 68
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
L
liuruilong 已提交
69
      input->dims(), 1, static_cast<int>(input->dims().size()));
L
liuruilong 已提交
70 71 72 73 74

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
L
liuruilong 已提交
75 76
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
L
liuruilong 已提交
77 78 79 80 81

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

82 83
  math::Vol2ColFunctor<CPU, Itype> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, Itype> im2col;
L
liuruilong 已提交
84

H
hjchen2 已提交
85
  const int batch_size = static_cast<int>(input->dims()[0]);
L
liuruilong 已提交
86 87 88 89 90 91 92 93
  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
H
hjchen2 已提交
94 95
        // col_matrix.ShareDataWith(in_slice);
        col_matrix = in_slice;
L
liuruilong 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
H
hjchen2 已提交
111

H
hjchen2 已提交
112
      math::MatMul<Itype, Otype>(filter_slice, false, col_matrix, false,
113 114 115
                                 static_cast<float>(1), &out_slice,
                                 static_cast<float>(0), false,
                                 static_cast<Otype *>(nullptr));
L
liuruilong 已提交
116 117 118 119
    }
  }
}

H
hjchen2 已提交
120 121
template <int tile, int kernel>
inline void WinogradConv3x3(const ConvParam<CPU> &param) {
122
  const Tensor *input = param.Input();
H
hjchen2 已提交
123
  const Tensor *filter = param.transformed_filter_;
124 125 126 127 128 129
  Tensor *output = param.Output();
  output->mutable_data<float>();
  int batch_size = input->dims()[0];
  int groups = param.Groups();
  const std::vector<int> &paddings = param.Paddings();

H
hjchen2 已提交
130 131
  auto winograd_pad = [&](int width, int pad) {
    int output_tile = tile - kernel + 1;
132 133
    // int tiles = (width + pad - kernel) / output_tile + 1;
    // return (tiles - 1) * output_tile + tile - width;
H
hjchen2 已提交
134 135 136 137
    int pad_width = (width + 2 * pad - kernel) / output_tile * output_tile;
    return pad_width + tile - width;
  };

H
hjchen2 已提交
138
  math::PadFunctor<CPU, float> pad;
139
  Tensor input_pad;
H
hjchen2 已提交
140
  framework::Tensor transformed_input;
141 142 143
  for (int i = 0; i < batch_size; ++i) {
    Tensor in_batch = input->Slice(i, i + 1);
    Tensor out_batch = output->Slice(i, i + 1);
144 145 146 147
    // int pad_bottom = winograd_pad(in_batch.dims()[2], paddings[0]);
    // int pad_right = winograd_pad(in_batch.dims()[3], paddings[1]);
    int pad_bottom = paddings[0];
    int pad_right = paddings[1];
H
hjchen2 已提交
148
    if (paddings[0] || paddings[1] || pad_bottom || pad_right) {
149
      framework::DDim pad_shape = in_batch.dims();
H
hjchen2 已提交
150 151
      pad_shape[2] += paddings[0] + pad_bottom;
      pad_shape[3] += paddings[1] + pad_right;
152
      input_pad.mutable_data<float>(pad_shape);
H
hjchen2 已提交
153
      pad(in_batch, paddings[0], pad_bottom, paddings[1], pad_right,
154
          &input_pad);
155
    } else {
H
hjchen2 已提交
156
      input_pad = in_batch;
157
    }
H
hjchen2 已提交
158 159 160 161 162
    // tile input and transform
    math::winograd_transform_input<tile, kernel>(input_pad, &transformed_input);
    // caculate output
    math::winograd_transform_output<tile, kernel>(transformed_input, *filter,
                                                  output);
H
hjchen2 已提交
163 164 165
  }
}

166
#ifndef __aarch64__
167
// int8 DepthwiseConv3x3
H
hjchen2 已提交
168 169 170 171
template <typename Itype, typename Otype>
inline void DepthwiseConv3x3(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  const Tensor *filter = param.Filter();
172 173 174
  const std::vector<int> &paddings = param.Paddings();
  const std::vector<int> &strides = param.Strides();
  const int batch_size = input->dims()[0];
H
hjchen2 已提交
175 176 177 178 179 180 181
  Tensor *output = param.Output();
  output->mutable_data<Otype>();

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1);
    Tensor out_batch = output->Slice(i, i + 1);
    if (strides[0] == 1) {
H
hjchen2 已提交
182
      math::DepthwiseConv3x3S1<Itype, Otype>(in_batch, *filter, paddings,
183
                                             &out_batch);
H
hjchen2 已提交
184
    } else if (strides[0] == 2) {
H
hjchen2 已提交
185
      math::DepthwiseConv3x3S2<Itype, Otype>(in_batch, *filter, paddings,
186
                                             &out_batch);
H
hjchen2 已提交
187
    } else {
188
      GemmConv<Itype, Otype>(param);
H
hjchen2 已提交
189
    }
E
eclipsess 已提交
190 191
  }
}
192
#endif  // __aarch64__
193 194 195 196 197 198 199 200 201 202 203

template <typename Itype, typename Otype>
inline void DepthwiseConv5x5(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  const Tensor *filter = param.Filter();
  const std::vector<int> &paddings = param.Paddings();
  const std::vector<int> &strides = param.Strides();
  const int batch_size = input->dims()[0];
  Tensor *output = param.Output();
  output->mutable_data<Otype>();

204 205 206 207 208 209 210 211 212 213
  //  if (strides[0] == 1) {
  //    for (int i = 0; i < batch_size; i++) {
  //      Tensor in_batch = input->Slice(i, i + 1);
  //      Tensor out_batch = output->Slice(i, i + 1);
  //      math::DepthwiseConv5x5S1<Itype, Otype>(in_batch, *filter, paddings,
  //                                             &out_batch);
  //    }
  //  } else {
  GemmConv<Itype, Otype>(param);
  //  }
214
}
E
eclipsess 已提交
215

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
template <typename ParamType>
void ConvAddReluBasic(const ParamType &param) {
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor bias = *param.Bias();

  Tensor *output = param.Output();
  output->mutable_data<float>();

  float alpha = 1.0f;
  float beta = 1.0f;
  int32_t groups = param.Groups();
  int32_t axis = param.Axis();
  std::vector<int32_t> strides = param.Strides();
  std::vector<int32_t> paddings = param.Paddings();
  std::vector<int32_t> dilations = param.Dilations();

  const int32_t batch_size = static_cast<int32_t>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
      framework::flatten_to_2d(col_shape, data_dim + 1);

  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
      input->dims(), 1, static_cast<int32_t>(input->dims().size()));

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};

  // convolution operator: im2col(or vol2col) + gemm
  int32_t in_step = static_cast<int32_t>(input->dims()[1]) / groups;
  int32_t out_step = static_cast<int32_t>(output->dims()[1]) / groups;

  float *bias_data = bias.data<float>();

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int32_t i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int32_t g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col_matrix = in_slice;
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int32_t>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

      math::MatMul<float, float>(filter_slice, false, col_matrix, false, alpha,
                                 &out_slice, beta, true, bias_data);
    }
  }
}

H
backup  
hjchen2 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
template <typename ParamType>
void ConvBNReluBasic(const ParamType &param) {
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor new_bias = *param.NewBias();
  Tensor new_scale = *param.NewScale();
  Tensor *output = param.Output();
  output->mutable_data<float>();

  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
      framework::flatten_to_2d(col_shape, data_dim + 1);

  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
      input->dims(), 1, static_cast<int>(input->dims().size()));

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col_matrix = in_slice;
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }
      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

      math::MatMulWithBn(filter_slice, false, col_matrix, false,
                         static_cast<float>(1), &out_slice,
                         static_cast<float>(0), true, &new_scale, &new_bias, g);
    }
  }
}

L
liuruilong 已提交
399 400
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
401 402

#endif