program.h 7.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <list>
17
#include <map>
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
25
#include "lite/model_parser/cpp_desc.h"
26 27 28
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/profiler.h"
#endif
29 30 31
#ifdef LITE_WITH_NVTX
#include "lite/backends/cuda/nvtx_wrapper.h"
#endif
Y
Yan Chunwei 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

namespace paddle {
namespace lite {

static const char kKernelTypeAttr[] = "__@kernel_type_attr@__";

// A program is used to represent a code program, in Paddle, a code program
// contains:
// - main block, which is a list of OpLite
// - scope: which contains all the weights
struct Program {
 public:
  explicit Program(const std::shared_ptr<Scope>& root) { scope_ = root; }
  Program(const cpp::ProgramDesc& desc,
          const std::shared_ptr<Scope>& root,
47 48
          const std::vector<Place>& valid_places,
          const std::vector<std::string>& var_names = {})
49 50
      : scope_(root), valid_places_(valid_places) {
    desc_.CopyFrom(desc);
Y
Yan Chunwei 已提交
51 52
    CHECK(scope_) << "scope should be init first";
    VLOG(4) << "prepare work";
53
    PrepareWorkspace(desc, var_names);
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    VLOG(4) << "build desc";
    Build(desc);
    VLOG(4) << "build desc finished";
  }

  std::unique_ptr<Program> Clone() const {
    std::unique_ptr<Program> res(new Program(desc_, scope_, valid_places_));
    return res;
  }

  const std::list<std::string>& weights() const { return weights_; }
  const std::list<std::string>& tmp_vars() const { return tmp_vars_; }
  std::list<std::string>* mutable_weights() { return &weights_; }
  std::list<std::string>* mutable_tmp_vars() { return &tmp_vars_; }

  const std::list<std::shared_ptr<OpLite>>& ops() const { return ops_; }
  std::list<std::shared_ptr<OpLite>>* mutable_ops() { return &ops_; }

  lite::Scope* exec_scope() { return exec_scope_; }
  lite::Scope* scope() { return scope_.get(); }

75 76
  cpp::ProgramDesc* program_desc() { return &desc_; }

77
  const std::map<std::string, PrecisionType>& var_data_type() const {
78 79 80
    return var_data_type_;
  }

Y
Yan Chunwei 已提交
81 82 83 84
 private:
  // Build from a program and scope.
  void Build(const cpp::ProgramDesc& program);
  // Create temporary variables.
85 86
  void PrepareWorkspace(const cpp::ProgramDesc& program,
                        const std::vector<std::string>& var_names = {});
Y
Yan Chunwei 已提交
87 88

 private:
89
  std::map<std::string, PrecisionType> var_data_type_;
Y
Yan Chunwei 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103
  std::list<std::string> tmp_vars_;
  std::list<std::string> weights_;
  std::list<std::shared_ptr<OpLite>> ops_;
  // the scope to run the kernels, NOTE this is the execution scope.
  std::shared_ptr<lite::Scope> scope_;
  std::vector<Place> valid_places_;
  // Runtime scope.
  lite::Scope* exec_scope_{};
  cpp::ProgramDesc desc_;
};

struct Instruction {
  Instruction(const std::shared_ptr<OpLite>& op,
              std::unique_ptr<KernelBase>&& kernel)
104 105 106 107 108 109
      : op_(op), kernel_(std::move(kernel)) {
    std::string op_type = op->Type();
    if (op_type == "feed" || op_type == "fetch") {
      is_feed_fetch_op_ = true;
    }
  }
Y
Yan Chunwei 已提交
110 111 112 113 114 115 116 117 118 119

  // Run the instruction.
  void Run();

  friend STL::ostream& operator<<(STL::ostream& os, const Instruction& other);

  const OpLite* op() const { return op_.get(); }
  const KernelBase* kernel() const { return kernel_.get(); }
  KernelBase* mutable_kernel() { return kernel_.get(); }

120 121
  bool is_feed_fetch_op() const { return is_feed_fetch_op_; }

122 123 124 125 126 127 128 129 130 131
#ifdef LITE_WITH_CUDA
  bool need_sync() const {
    if (kernel_->target() == TargetType::kCUDA) {
      return kernel_->mutable_context()->As<CUDAContext>().need_sync();
    } else {
      // the io_copy kernel has synced, so cpu kernels don't need sync..
      return false;
    }
  }
  void Sync() const { kernel_->mutable_context()->As<CUDAContext>().Sync(); }
J
update  
jiweibo 已提交
132
  void UpdateContext(cudaStream_t exec, cudaStream_t io) {
J
jiweibo 已提交
133
    if (kernel_->target() == TargetType::kCUDA) {
J
update  
jiweibo 已提交
134 135
      kernel_->mutable_context()->As<CUDAContext>().SetExecStream(exec);
      kernel_->mutable_context()->As<CUDAContext>().SetIoStream(io);
J
jiweibo 已提交
136 137
    }
  }
138 139
#endif

140 141 142 143 144
#ifdef LITE_WITH_PROFILE
  void set_profiler(profile::Profiler* profiler) {
    profiler_ = profiler;
    if (op_->Type() != "feed" && op_->Type() != "fetch") {
      profile::OpCharacter ch;
145
      ch.op_lite = static_cast<void*>(const_cast<paddle::lite::OpLite*>(op()));
146 147 148
      ch.target = kernel()->target();
      ch.op_type = op_->Type();
      ch.kernel_name = kernel()->name();
149 150 151
      ch.kernel_attr = kernel()->name().substr(ch.op_type.size() + 1,
                                               kernel()->name().size());
      // append `ch.kernel_func_name` in StopTiming
152 153 154 155
      profile_id_ = profiler->NewTimer(ch);
      kernel_->SetProfiler(profiler_, profile_id_);
    }
  }
156 157 158 159 160

  void SetProfileRuntimeOpInfo(paddle::lite::profile::OpCharacter* ch) {
    auto* op_lite = static_cast<paddle::lite::OpLite*>(ch->op_lite);
    op_lite->GetOpRuntimeInfo(ch);
  }
161 162
#endif

Y
Yan Chunwei 已提交
163 164 165
 private:
  std::shared_ptr<OpLite> op_;
  std::unique_ptr<KernelBase> kernel_;
166
  bool is_feed_fetch_op_{false};
Y
Yan Chunwei 已提交
167 168 169 170
  bool first_epoch_{true};
  bool has_run_{false};

#ifdef LITE_WITH_PROFILE
171
  profile::Profiler* profiler_;
Y
Yan Chunwei 已提交
172
  int profile_id_{-1};
173
  bool first_epoch_for_profiler_{true};
Y
Yan Chunwei 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186
#endif  // LITE_WITH_PROFILE
};

/*
 * A program contains kernels for runtime.
 */
class LITE_API RuntimeProgram {
 public:
  explicit RuntimeProgram(std::vector<Instruction>&& insts)
      : instructions_(std::move(insts)) {
    if (instructions_.empty()) {
      LOG(FATAL) << "no instructions";
    }
187 188
#ifdef LITE_WITH_PROFILE
    set_profiler();
189 190 191 192 193 194 195 196 197
#endif
#ifdef LITE_WITH_NVTX
    const NVTXAnnotator& annotator = NVTXAnnotator::Global();
    for (auto& inst : instructions_) {
      NVTXRangeAnnotation annotation = annotator.AnnotateBlock();
      register_layer_names_.push_back(annotator.RegisterString(
          const_cast<paddle::lite::OpLite*>(inst.op())->Type().c_str()));
    }
    register_layer_names_.push_back(annotator.RegisterString("one_loop"));
198
#endif
Y
Yan Chunwei 已提交
199
  }
200 201
  ~RuntimeProgram() {
#ifdef LITE_WITH_PROFILE
202 203
    LOG(INFO) << "\n" << profiler_.Summary(profile::Type::kCreate);
    LOG(INFO) << "\n" << profiler_.Summary(profile::Type::kDispatch);
204 205
#endif  // LITE_WITH_PROFILE
  }
Y
Yan Chunwei 已提交
206 207 208 209 210 211 212 213 214 215

  void Run();

  void set_exec_scope(lite::Scope* x) { exec_scope_ = x; }
  lite::Scope* exec_scope() { return exec_scope_; }

  size_t num_instructions() const { return instructions_.size(); }

  const std::vector<Instruction>& instructions() const { return instructions_; }

216 217
  // `SaveOpInfosToProgram` will update the op list(ops_) of the block 0
  // in ProgramDesc.
Y
Yan Chunwei 已提交
218 219
  void SaveOpInfosToProgram(cpp::ProgramDesc* desc);

220 221 222 223 224
  // `UpdateVarsOfProgram` will update the var list(vars_) of the block 0 in
  // ProgramDesc. Namely, if a new var created in some passes, its var_desc will
  // be added in vars_.
  void UpdateVarsOfProgram(cpp::ProgramDesc* desc);

J
jiweibo 已提交
225 226 227
#ifdef LITE_WITH_CUDA
  // UpdateContext will update the exec stream and io stream of all kernels in
  // the program.
J
update  
jiweibo 已提交
228
  void UpdateContext(cudaStream_t exec, cudaStream_t io);
J
jiweibo 已提交
229 230
#endif

Y
Yan Chunwei 已提交
231 232 233 234
 private:
  RuntimeProgram(const RuntimeProgram&) = delete;
  std::vector<Instruction> instructions_;
  lite::Scope* exec_scope_{};
235 236 237 238 239 240 241 242 243

#ifdef LITE_WITH_PROFILE
  profile::Profiler profiler_;
  void set_profiler() {
    for (auto i = instructions_.begin(); i != instructions_.end(); ++i) {
      i->set_profiler(&profiler_);
    }
  }
#endif
244 245 246
#ifdef LITE_WITH_NVTX
  std::vector<nvtxStringHandle_t> register_layer_names_;
#endif
Y
Yan Chunwei 已提交
247 248 249 250
};

}  // namespace lite
}  // namespace paddle